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A B S T R A C T

Association mapping can be viewed as an application of population genetics and evolutionary biology to

the problem of identifying genes causally connected to phenotypes. However, some population-genetic

principles important to the design and analysis of association studies have not been widely understood

or have even been generally misunderstood. Some of these principles underlie techniques that can aid

in the discovery of genetic variants that influence phenotypes (‘windfalls’), whereas others can interfere

with study design or interpretation of results (‘pitfalls’). Here, considering examples involving genetic

variant discovery, linkage disequilibrium, power to detect associations, population stratification and

genotype imputation, we address misunderstandings in the application of population genetics to as-

sociation studies, and we illuminate how some surprising results in association contexts can be easily

explained when considered from evolutionary and population-genetic perspectives. Through our ex-

amples, we argue that population-genetic thinking—which takes a theoretical view of the evolutionary

forces that guide the emergence and propagation of genetic variants—substantially informs the design

and interpretation of genetic association studies. In particular, population-genetic thinking sheds light

on genetic confounding, on the relationships between association signals of typed markers and causal

variants, and on the advantages and disadvantages of particular strategies for measuring genetic vari-

ation in association studies.

K E Y W O R D S : genome-wide association studies; imputation; linkage disequilibrium; population

stratification

Identification of genetic loci that contribute to

phenotypic outcomes is one of the most important

missions of genetics. Researchers continue to vigor-

ously seek genetic factors that underlie disease

phenotypes and other traits, particularly in humans.

Over the last decade, a primary tool in this search

has been the association study, which aims to

locate disease-susceptibility loci by identifying al-

leles whose presence in study subjects is statistically

associated with the occurrence of disease.

Association studies rely on the fact that once disease

variants arise, evolutionary processes including

mutation, recombination and coalescence of genea-

logical lineages tend to maintain associations
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between susceptibility alleles and disease status and

to disrupt associations between disease status and

other alleles. Thus, the utility of association

mapping for locating disease loci is grounded in

population-genetic phenomena.

Association-based identification of disease-sus-

ceptibility loci is difficult partly because associations

between genotypes and phenotypes are complicated

by the evolutionary histories and population-genetic

properties of the genomic regions under study.

Depending on the specific populations and study

designs used, these complications can lead to fail-

ures to uncover true causal relationships, attribu-

tions of true signals to the wrong markers and

detections of spurious associations that are not

due to any causal relationship. At the same time,

other aspects of evolutionary and population-gen-

etic thinking provide a basis for surprising tech-

niques that enhance the overall program of

association mapping. In some cases, difficulties

and successes in the application of population gen-

etics to association mapping are widely appreciated

and are routinely incorporated in study design and

analysis. In other cases, however, mechanisms by

which population-genetic processes hinder or aid

association studies are counterintuitive or not gen-

erally recognized.

To facilitate a deeper understanding of associ-

ation studies and their basis in evolutionary

biology and population genetics, this article

aims to illuminate some recurring difficulties or

misunderstandings (‘pitfalls’) and some unex-

pected successes (‘windfalls’) in the application of

population genetics to association studies.

1. PITFALL: THE MAXIMUM POSSIBLE
VALUE OF THE R2 STATISTIC FOR
LINKAGE DISEQUILIBRIUM BETWEEN
TWO LOCI IS TYPICALLY NOT 1.
INSTEAD, IT IS A FUNCTION OF THE
ALLELE FREQUENCIES OF THE LOCI

In the 1990s, well before the advent of genome-wide

association (GWA) studies, linkage disequilibrium

(LD) was increasingly recognized as a potentially

valuable tool for genetic mapping [1, 2]. Given that

testing every locus in the human genome for disease

association was not imminently feasible, the idea

of indirect association testing arose, in which a sub-

set of markers carefully chosen to ‘capture’

ungenotyped variation would be examined [3, 4].

These markers would not necessarily be expected

to have a direct impact on disease risk; rather, asso-

ciations between a marker and disease would repre-

sent statistical associations arising from LD

between genotyped markers and true causal loci.

The measurement of LD—a topic that originated

in evolutionary modeling [5, 6] and had long been

of interest in purely population-genetic studies

[7–9]—became fundamental to the dominant para-

digm for genetic mapping. Among the LD measures

available [1], the squared correlation coefficient r2

emerged as particularly useful in association

mapping because of its simplicity, its interpretation

as the square of a correlation, and its relationship to

the power to detect association with a marker in LD

with a causal variant—but more on that later. As a

consequence of this important new role for r2, math-

ematical properties of the r2 statistic have become

directly relevant to association mapping. Some of

these properties have not always been understood,

potentially leading to confusion in the interpretation

of association studies.

As a general rule, correlation coefficients lie be-

tween �1 and þ1, and the same is true in the LD

context for the correlation coefficient r, which meas-

ures the correlation between two indicator variables,

one for the presence of a specific allele at the first of a

pair of biallelic loci and the other for the presence of a

specific allele at the second locus. It is tempting to

assume that r ranges from �1 to 1 (and thus r2

ranges from 0 to 1) for any pair of markers with

any allele frequencies. This is a misunderstanding.

Squared correlations between binary indicator

variables, in fact, can only achieve a value of 1 when

the variables have equal expectation or when the

sum of their expectations is 1. Otherwise, the upper

bound is strictly smaller than 1. Consider two loci,

one with alleles A and a and the other with alleles B

and b, where pA, pa¼ 1� pA, pB, and pb¼ 1� pB rep-

resent the (non-zero) frequencies of alleles A, a, B

and b, respectively, and pAB, pAb, paB and pab, respect-

ively, represent the frequencies of haplotypes AB, Ab,

aB and ab. Denoting the correlation coefficient

between the two loci by

r ¼ ðpAB � pApBÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pApapBpb
p

,

r¼ 1 if and only if pA¼ pB¼ pAB, and r¼�1 if and

only if pA¼ pb¼ pAb. In both cases, as a function of

pA, pB and pAB, the maximum possible value of r2,

or r2
max, equals 1 if and only if the allele frequencies

are equal at the two loci (i.e. {pa, pA}¼ {pb, pB}).

Without loss of generality, interchanging loci and
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alleles so that pA� 1/2, pB� 1/2 and pA� pB, r2 has a

maximum value of (1� pA)pB/[pA(1� pB)] (Fig. 1)

[10–12].

As an example, consider two pairs of loci, one with

r2
¼ 1/40 and another with r2

¼ 1/4. It is tempting to

conclude that the first pair displays ‘lower LD’ than

the second. If the first pair of loci has (pA,pB)¼

(1/3,1/51), then r2 has a maximum of 1/25,

and the observed r2 of 1/40 is 62.5% of the max-

imum value. If the second pair of loci has (pA,pB)¼

(1/3,1/5), then r2 has a maximum of 1/2, and the

observed r2 is only 50% of the maximum. Thus, sim-

ply relying on the magnitude of r2 can fail to provide a

complete sense of the nature of LD between a pair of

loci.

The dependence of r2 on allele frequencies affects

the search for disease genes in several ways. For

example, as discussed below, power to detect a

causal variant using a single-nucleotide polymorph-

ism (SNP) marker is related to the value of r2 be-

tween the causal variant and the marker. Thus, if

the minor allele frequencies of a SNP marker and a

causal SNP are dissimilar, then the power to detect

an effect at the marker can be small. As another

example, when a marker is reliably detected by

GWA studies as associated with disease, one stand-

ard method of searching for the causal variant is to

look for variants in high LD with the marker accord-

ing to the r2 measurement. This approach can suffer

when the minor allele frequencies of the marker and

the causal variant are dissimilar, as high values of r2

are then impossible. Methods for accounting for the

allele-frequency dependence of r2 in an association

context are now under development. For example,

Zhu et al. [13] propose that loci whose r2 values with

a disease-associated marker are relatively high

compared with their r2 values with other non-

disease-associated markers should be prioritized

as candidate disease loci. With increasing interest

in rare disease-causing variants—which occupy a

different part of the allele-frequency space from the

variants that have been of primary interest in most

GWA studies to date—efforts to incorporate or cir-

cumvent the frequency-dependence of r2 are sure to

continue.

2. WINDFALL: EVEN THOUGH THE
WORLDWIDE HUMAN POPULATION IS
IN THE BILLIONS AND THE HUMAN
GENOME CONTAINS MILLIONS OF
SNPS, A SAMPLE OF FEWER THAN 1000
PEOPLE IS SUFFICIENT FOR
IDENTIFYING MOST OF THE ‘COMMON’
HUMAN GENETIC VARIANTS

Given that the allele frequencies of marker SNPs

influence the possibility that they can be used to

efficiently detect disease variants of particular

frequencies (point 1), it is essential to the GWA pro-

gram to have a catalog of marker SNPs at known

frequencies. The International HapMap Project

[14] was launched in 2002 with the aim of facilitating

future GWA studies by identifying ‘common’ SNPs

in a small number of human populations. These

SNPs, typically with a minor allele frequency above

0.05 or 0.1, would then be used to identify a subset of

‘haplotype-tagging’ SNPs that could be genotyped in

association studies and tested for disease associ-

ation. Since it was already predicted that the number

of SNP variants would run into the millions, it might

seem unsettling that the initial sample size used in

the HapMap project was only 269. Even more appar-

ently surprising is that most of the SNP discovery

process relied on even smaller panels of individuals.

Straightforward calculations show, however, that

most common polymorphisms will be detected as

variable even in relatively small samples. Consider a

site for which the minor allele has frequency p�½ in

a population and the major allele has frequency

1� p. If people are sampled independently at ran-

dom and each person’s two alleles at the site are

independent, then the probability that both allelic

types occur at least once in a sample of n people is

Pðdetection jpÞ ¼ 1� p2n � ð1� pÞ2n: ð1Þ
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Figure 1. Contour plot of the maximal value of the r2 LD stat-

istic for a pair of loci. The frequency of A, the minor allele of

the first locus, is pA, and the frequency of B, the minor allele

of the second locus, is pB, with pA� pB. The maximum r2 is

(1� pA)pB/[pA(1� pB)]
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This result is obtained by noting that the probability

that every observation is of the minor allele is p2n and

that the probability that every observation is of the

major allele is ð1� pÞ2n. Figure 2A shows the prob-

ability that for a locus with a minor allele of a given

frequency, both alleles will appear at least once in a

sample of a given size. Even small samples identify

most loci with polymorphisms of appreciable minor

allele frequency.

What might have initially seemed to be a surpris-

ingly small sample size might now appear surpris-

ingly large—if a sample of just 100 people identifies

>86.6% of the loci with minor allele frequency 0.02

and >99.99% of loci with minor allele frequency

0.05, then why do we need larger samples?

Consider the situation at the beginning of the

HapMap project. Interest was focused on common

variants, and one important goal was to catalog

common variation in the human genome. If any vari-

able locus that appears in a sample is identified as a

SNP, then most common variants will be identified,

but some rare variants, which are less useful for

haplotype tagging, will also be identified. The degree

to which we risk misidentifying loci with rare minor

alleles as loci with common minor alleles depends

on the distribution of allele frequencies in the popu-

lation, a consequence of the population’s evolution-

ary history. The number of variable loci identified at

minor allele frequency p is proportional to the prod-

uct of the probability of detecting a variable locus

conditional on p, given in Equation (1), and the num-

ber of loci with minor allele frequency p. The more

prevalent loci with rare minor alleles are in the popu-

lation, the more the set of identified variants will

contain (unwanted) rare variants.

Population-genetic models of neutral evolution

predict that the number of variable loci with minor

allele frequency p decreases as p increases. That is, a

large fraction of variable loci will have rare minor

alleles. Consider the standard neutral infinitely-

many-sites mutation model, which assumes that

each new mutation occurs at a previously

unmutated locus and that all mutations are select-

ively neutral. Assuming that mating is random and

that the population size is constant across gener-

ations, the model predicts that the number of loci

with minor allele frequency p is proportional to 1/

[p(1� p)] (e.g. modifying [15], eq. 1.56 by adding the

frequencies of loci with derived allele frequencies of

p and 1� p to get the folded site frequency spec-

trum; that is, 1/pþ 1/(1� p)¼ 1/[p(1� p)]). Most

new mutations are lost before they can drift to high

Figure 2. Detection of polymorphic loci. (A) The probability

that both alleles at a biallelic locus appear in samples of vari-

ous sizes conditional on minor allele frequency (Equation 1).

Most loci with minor allele frequencies of 0.1 or greater ap-

pear even in a sample of 10 people (20 chromosomes). (B) PPV

and sensitivity for detecting loci with minor allele frequencies

of 0.05 or greater in various sample sizes. The curve is con-

structed by calculating the sensitivity and PPV for each choice

of k (Equations 3 and 4), where k is the minimum number of

copies of each variant at a biallelic site that must be observed

to accept the site into the set of loci with common minor

alleles. As k increases from 1 to n, sensitivity decreases from

near 1 to near 0, while PPV increases from its minimum value,

which is lower for larger n, to near 1. As the sample size grows,

choices of k that give higher sensitivity and PPV become avail-

able. With sample sizes in the low hundreds, it is possible to

detect over 90% of loci with minor allele frequency>0.05 while

ensuring that fewer than 10% of the identified loci have minor

allele frequencies <0.05, assuming that allele frequencies are

distributed as predicted by the neutral infinitely-many-sites

model with constant population size
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frequency, and thus, most variable loci have low

minor allele frequency.

In the presence of abundant rare variants, re-

searchers who aim to identify only common variants

must filter out loci with rare minor alleles. Suppose

that we want to identify only loci with minor allele

frequency c or greater. Eberle and Kruglyak [16]

proposed a natural strategy for achieving this

goal—namely, to require that each variant at a locus

be observed several times, say k times, to classify the

locus as a candidate haplotype-tagging SNP. Eberle

and Kruglyak studied both the probability that a

locus is detected as variable given its minor allele

frequency and the minor allele frequency distribu-

tion of the discovered SNPs. For illustration, we

extend their results by deriving the probability that

a locus is detected as variable given that its minor

allele frequency is greater than some threshold

value, as well as the proportion of the discovered

SNPs that have minor allele frequencies greater than

the threshold value.

Summing over the binomial distribution, if

chromosomes are independent, then the probability

that each allele at a variable locus with minor allele

frequency p appears at least k times in a sample of n

people, 1� k� n, is

P detection jpð Þ ¼
X2n�k

i¼k

2n
i

� �
pið1� pÞ2n�i: ð2Þ

Rare variants are unlikely to appear many times in

the sample, so the representation among the

identified loci of sites with low minor allele frequency

decreases with increasing k. The sensitivity for iden-

tifying loci with minor allele frequency c or more is

given by

Pðdetection jp > cÞ ¼R 1=2
c

1
pð1�pÞ

P2n�k
i¼k

2n

i

� �
pið1� pÞ2n�idpR 1=2

c
dp

pð1�pÞ

:

ð3Þ

The sensitivity is the probability that each of the two

alleles at a locus appears at least k times in a sample

of n people given that the locus has a minor allele

frequency of c or greater. That is, it is the expected

proportion of loci with minor allele frequencies in the

desired range that the method will successfully

identify.

In contrast, the positive predictive value (PPV) is

the probability that a locus has a minor allele fre-

quency of c or greater given that each of its two

alleles appears k or more times in the sample. That

is, it is the proportion of loci identified by the pro-

cedure that would be expected to actually have

minor allele frequencies in the desired range. To cal-

culate the PPV, we apply Bayes’ Theorem and inte-

grate to get

P p > cjdetectionð Þ ¼R 1=2
c

1
pð1�pÞ

P2n�k
i¼k

2n

i

� �
pið1� pÞ2n�idp

R 1=2
0

1
pð1�pÞ

P2n�k
i¼k

2n

i

� �
pið1� pÞ2n�idp

:
ð4Þ

For finite population sizes, the integrals in the ex-

pressions for both sensitivity and PPV are replaced

by analogous sums.

Figure 2B shows sensitivities and PPVs for various

sample sizes drawn from an infinite population,

choosing c¼ 0.05 as the minimum desired minor

allele frequency. As the sample size increases, it be-

comes possible to choose k such that few loci with

minor allele frequencies less than c are identified but

nearly all loci with minor allele frequencies greater

than c are identified. For example, with a sample size

of 250 people, choosing k¼ 30 identifies>93.3% of

loci with minor allele frequency>0.05 and>99.99%

of loci with minor allele frequency >0.1, and only

0.7% of the identified loci will have minor allele

frequencies <0.05. Thus, under a model of neutral

evolution with infinitely-many-sites mutation and

constant population size, a sample of a few hundred

is large enough to provide a choice of k that allows

detection of most common variants while screening

out most rare variants.

At present, more than 10 years after the launch

of the HapMap project, researchers are increas-

ingly interested in the possible role of rare variants

in phenotypic variation [17–21], and a current goal

is to catalog loci with minor allele frequencies as

low as c¼ 0.005 or c¼ 0.001. However, as we ap-

proach lower target minor allele frequencies,

human evolutionary history complicates the task

of specifically identifying loci with minor allele

frequencies above a chosen level. In particular,

the historical growth of the human population,

which violates the standard neutral model, calls

for new calculations.

In a growing population, the assumption of con-

stant population size leads to a significant under-

estimate of the fraction of variable loci whose

minor alleles have low frequency. Humans

have experienced population growth for many
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generations, thereby increasing the proportion of

rare variants relative to the prediction of the neutral

model [18, 22]. When population growth is taken

into account, the great majority of variants are pre-

dicted to have minor allele frequencies<0.01 [18, 23,

24]. Sequencing studies support this prediction

[19, 25], with one study finding that 86% of identified

variants had minor allele frequencies <0.005 [21].

This increased prevalence of rare variants decreases

the PPV of procedures for detecting loci with com-

mon alleles compared with results obtained under

constant population size.

Larger samples are then required for meeting the

present goal of cataloging loci with low minor allele

frequencies, especially if high sensitivity and PPV are

required. One study, using a statistical model for

allele frequencies with parameters estimated from

small sequence data sets, suggested that with a

k¼ 1 threshold, achieving 80% sensitivity for loci

with a minimum minor allele frequency of 0.001 re-

quires a sample of�150 people, and achieving 99%

sensitivity requires �1000 people [26]. These com-

putations ignore the PPV, which is likely to be low

with k¼ 1. The desired sample sizes will be further

inflated if k is set larger than 1 to filter out loci with

minor allele frequencies less than c. Regardless of

the specific form of the distribution of allele

frequencies or the frequencies targeted for ascer-

tainment, the overall strategy outlined here can

serve as a guide for understanding the detection of

variable loci in a sample.

3. PITFALL: IN A CASE-CONTROL STUDY,
THE RESULT THAT A SIMPLE 1/R2

SAMPLE-SIZE INFLATION FACTOR
RELATES THE SAMPLE SIZE NEEDED TO
DETECT DISEASE ASSOCIATION AT A
CAUSAL LOCUS TO THE
CORRESPONDING SAMPLE SIZE
NEEDED AT A LINKED MARKER LOCUS
DEPENDS ON ASSUMPTIONS THAT ARE
NOT ALWAYS WARRANTED

In an important analysis of the population genetics

of LD in association studies, Pritchard and

Przeworski [27] demonstrated that if a disease locus

is in LD at level r2
¼ d with a marker locus that is

otherwise unrelated to disease status, then a 2� 2

chi-square test for disease association at the marker

locus with a sample of size n/d has approximately

the same power as a test at the true disease locus

with sample size n. This result, which for diploids

assumes that it is the alleles at a locus rather than

the diploid genotypes that are tested for association

with the phenotype, has influenced both SNP selec-

tion and sample size determination in GWA studies

[28, 29]. However, relying on this result generates a

potential problem: as was discussed most provoca-

tively by Terwilliger and Hiekkalinna [30], the as-

sumptions necessary for the result’s derivation do

not always hold, and when they are violated, the

properties of power and sample size inflation can

be dramatically different. How, then, are we to think

about the sample size inflation factor, its underlying

assumptions, and their relevance for association

studies?

We can build intuition about the sample size

inflation factor and its underlying assumptions by

considering the population genetics of LD using

concepts developed outside genetics, in psychomet-

rics and econometrics. As we will see, Pritchard and

Przeworski’s result is closely related to a set of re-

sults from psychometric true score theory, and the

central complaint of Terwilliger and Hiekkalinna’s

[30] provocative reply can be viewed as an applica-

tion of an econometric viewpoint to the same prob-

lem. We start by explaining the relationship between

Pritchard and Przeworski’s result and psychometric

true score theory. Next, we consider a more general

view of measurement error inspired by econo-

metrics, and we explain how Terwilliger and

Hiekkalinna’s concern arises from this view.

In psychometric true score theory, it is assumed

that the results of a measurement are the sum of a

‘true score’ and a random measurement error [31].

For example, suppose a psychologist asks a partici-

pant to solve a puzzle as quickly as possible. We

might conceive of the measured time as arising

partly from the participant’s true ability to solve the

puzzle—which would remain constant if we were to

administer equally difficult puzzles in repeated

studies—and as partly due to other, random factors.

The impact of this second set of factors would be

expected to vary across repetitions of the procedure.

In classical psychometrics, the component that re-

mains the same across repeated measurements is

known as the ‘true score’ and can be viewed as the

expectation of the score for the person or other entity

being measured [32]. The component that varies

across repeated measurements is known as ‘meas-

urement error’. Measurement errors are usually

assumed to be independent of true scores of other

variables under study and of other measurement

errors from separate replicates. Because of this
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independence, the variance of the observed scores

in a population is the sum of the variance of the true

scores in the population, or true score variance, and

the variance of the measurement errors, or error vari-

ance. The reliability of a measurement is defined as

the proportion of its observed variance that is true

score variance,

� ¼
�2

true

�2
observed

¼
�2

true

�2
true þ �

2
error

,

a quantity that also equals the square of the correl-

ation between the observed and true scores.

To view the problem of identifying disease loci via

association studies from a psychometric stand-

point, consider a study participant’s allele at a dis-

ease locus as a true score, her allele at the marker

locus as an observed score, and the r2 measure of LD

as the reliability, the square of the correlation be-

tween the observed score and the true score. From

this perspective, the 1/r2 sample-size inflation factor

in the association context can be seen as an instance

of a class of results on the relationship between the

power to reject hypotheses about the true score and

the reliability of observed scores. Psychometricians

have shown that if the reliability of a measurement is

changed from � to �0 as a result of a change in meas-

urement error—that is, holding the true score vari-

ance constant—then for a variety of statistical tests,

the sample size required to obtain a given power

level changes by a factor of �/�0 [33–36]. In the LD

setting, error-free measurement of the causal locus

has reliability 1, and measurement of the marker has

reliability r2, producing exactly the 1/r2 inflation

factor (Fig. 3A).

Application of Pritchard and Przeworski’s results

requires that the assumptions necessary for its der-

ivation are met, or at least that the possibility and

potential effects of their violation are understood.

As pointed out by Terwilliger and Hiekkalinna [30],

several of these assumptions warrant special con-

sideration. One of their most important complaints

is that the 1/r2 inflation factor assumes that the

marker locus and disease status are independent

after conditioning on the causal locus. If this condi-

tion is not met—as can happen, for example, when

the marker locus is in LD with more than one causal

locus—then either more or fewer subjects might be

required. In extreme cases, the causal locus might

not be detectable at all.

To understand this caveat, consider the variance

of the allelic state at the marker locus that remains

after conditioning on the causal locus—the analog

of the psychometric error variance. To obtain the 1/r2

result, we assume that the genetic ‘error variance’ is

independent of the phenotype. This corresponds

with standard assumptions in psychometrics,

where it is assumed that measurement error is inde-

pendent of the true score and of all other variables

under study. Terwilliger and Hiekkalinna’s critique

amounts to a comment that measurement errors

might in fact be correlated with the dependent

variable. In econometrics and other fields that

rely largely on observational data, there is a long

tradition of considering such possibilities.

Measurement errors in the independent variable,

regardless of their correlation with the dependent

variable, can be considered in the general framework

of endogeneity, which arises whenever one or more

of the independent variables is correlated with the

error term in a regression model [37].

As shown in the Appendix, measurement errors in

the independent variable can lead (and usually do

lead) to bias in the estimation of the relationship

between the independent and dependent variables.

When the measurement errors are statistically

associated with the dependent variable, the direc-

tion and degree of bias are flexible, and in principle,

it is possible for the strength of the observed rela-

tionship to be inflated, decreased, eradicated or

even reversed in direction compared with the true

relationship. Naturally, then, when measurement

errors in the independent variable are associated

with the dependent variable, changes in measure-

ment error are no longer guaranteed to alter required

sample sizes by a factor of �/�0. Depending on

the direction and strength of correlation between

the measurement errors and the dependent vari-

able, the required sample size might be larger

or smaller than the 1/r2 factor suggests, or, in ex-

treme cases, the relationship might not be detect-

able at all.

Consider the case illustrated in Fig. 3B, in which

the marker locus is in LD with two loci, one of

which has a risk allele and a neutral allele (the risk

locus), and the other of which has a protective

allele and a neutral allele (the protective locus).

It is possible for the observed correlation between

the marker locus and the phenotype to take on any

value between �1 and 1, depending on the various

haplotype frequencies. This is true even when both

the LD between the marker locus and the risk

locus and the effect of the risk locus on the pheno-

type are relatively large. For example, when
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w¼ x¼¼ and u¼½ (see the figure for notation),

the risk locus accounts for 2/3 of the variance in

the phenotype, and the r2 measure of LD between

the marker locus and the risk locus is 1/3, but the

marker locus is not correlated with the phenotype.

The change from the situation in Fig. 3A can be

viewed as arising from the fact that the measure-

ment error in Fig. 3B, that is, the variance in the

marker locus that is unrelated to the risk locus, is

correlated with the phenotype because of its cor-

relation with the protective locus.

Terwilliger and Hiekkalinna [30] claimed that

typical misapplications of the 1/r2 sample-size infla-

tion factor overstate the power to detect disease as-

sociation. Although the extent to which such

overstatements have affected actual association

studies has been debated [38–40], a clear conclusion

is that it is important to recognize the assumptions

that underlie the derivation of sample-size inflation

factors. This recognition can assist in analyzing

other cases in which imperfect measurement of a

causal locus has an effect on association test statis-

tics [41, 42].

4. WINDFALL: GENOTYPE IMPUTATION
WORKS

Genotype imputation is an application of population

genetics that has advanced the recent wave of GWA

studies [43–45]. In typical imputation applications,

genotypes from study subjects are augmented by

data from reference samples that have been fully

sequenced or genotyped on a denser collection of

markers. The reference data are used to impute

genotypes in the study subjects at positions

genotyped in the reference sample but not

genotyped in the study sample. In an imputation-

based association study, positions that are newly

imputed in the study sample are tested for disease

association using procedures similar to those used

at positions for which genotypes have been experi-

mentally measured.

Figure 3. Examples relating to the 1/r2 sample size inflation factor. (A) A situation in which the 1/r2 sample size inflation factor

holds. (B) A situation in which it does not generally hold. In both cases, we genotype a neutral marker locus M, and the question is

by what factor one needs to multiply one’s sample size to detect the relationship between M1 and the phenotype of interest, ’,

with the same power that would be obtained if the risk locus, R, were genotyped directly. In (A), we have just the marker locus, M,

and the risk locus, R. The alleles at the marker locus do not affect the phenotype ’, but at the risk locus, the R1 allele increases ’ by

one. No recombination events have occurred to separate the loci, so the R1/M0 haplotype does not exist. The frequencies (f) of the

three available haplotypes are u, v and w, as shown. In this case, the 1/r2 sample size inflation factor holds, where r2 measures

the LD between the risk locus R and the marker locus M. After conditioning on the allele at the risk locus R, the marker locus and

the phenotype are independent. In (B), we add a protective locus, P. The P0 allele does not change ’, but the P1 allele decreases ’

by one. We assume that P1 co-occurs only with M1. If either x or y is positive, then the 1/r2 sample size inflation factor does not

provide the same power for detecting risk at marker locus M as if risk locus R were genotyped directly, because the association

between the marker M and the phenotype is no longer due strictly to the risk locus R but depends also on the protective locus P.

If x<w, then more subjects will be required than would be predicted by the 1/r2 result. If x¼w, then M will not be associated with

’, and no number of subjects will provide power greater than the type I error rate. When x>w, M1 is associated with lower, rather

than higher, values of ’, and the direction of the relationship from (A) is reversed. In contrast to (A), when we condition on the

allele at the risk locus R, the marker locus M is still associated with the phenotype because both M and the phenotype are

associated with the protective locus P
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Two aspects of genotype imputation differ sub-

stantially from typical imputation problems in sur-

vey data and other areas of statistics [46]. First, a

variable for which no one in the study has actually

been measured can be imputed accurately. Second,

the number of variables imputed in any given subject

can vastly exceed the number of variables measured.

From the perspective of practitioners working in typ-

ical missing data settings, the success of genotype

imputation might be unexpected: A few hundred

thousand variables are measured directly in a sam-

ple, and millions of additional variables that were

not measured in any of the study subjects can be

imputed with mean accuracy well over 90%. Is this

not just ‘making up data’?

The success of imputation methods is a conse-

quence of the strength of the correlation structure

among nearby markers along the genome, which in

turn results from the evolutionary descent of genet-

ically similar haplotypes from shared ancestral

haplotypes (Fig. 4). If a haplotype in a study sample

matches a haplotype in a reference panel at a series

of genotyped positions, then it is likely that the study

and reference haplotypes are inherited identically by

descent from a recent common ancestor. The alter-

native explanation that identical genotypes were

generated by distinct mutational paths becomes in-

creasingly unlikely for long sequences of shared

alleles. As a result, the study and reference haplo-

types likely share alleles identically by descent at the

intervening positions. Those positions can therefore

be imputed accurately by copying alleles with the

reference haplotype as a template. Although the im-

putation will be imperfect owing to insufficient

sharing between study and reference haplotypes or

imperfect choices of templates from the reference

panel, studies with numerous algorithms, reference

panels and target populations have found that im-

putation accuracy is often remarkably high [47–52].

Correlations between neighboring sites are so

strong that each SNP contains much less than one

bit of information when considered in the context of

its neighbors, allowing for accurate imputation once

enough SNPs are typed.

? ? ?

? ? ?

? ? ?

Study sample

Reference panel

Figure 4. The population-genetic principle underlying genotype imputation. At the bottom of the figure, rows represent haplo-

types, and columns represent genomic positions, each with two distinct alleles represented by two colors. Some positions are

genotyped only in the reference panel and not in the study sample. Imputation of missing genotypes in the study sample

(question marks) is successful because study and reference haplotypes are related by descent, as indicated by the genealogy.

Identity of a study haplotype to a reference haplotype at genotyped positions suggests shared descent and therefore identity at

intervening ungenotyped positions as well. This matching enables imputation of missing genotypes in the study sample (thick

black boxes)

262 | Edge et al. Evolution, Medicine, and Public Health

)
``
''
,
)


Upon its introduction, imputation quickly became

a routinely used component of the GWA toolbox.

Imputed genotypes were quickly incorporated into

fine-scale mapping studies and meta-analytic

studies that combined different marker sets

[44, 45]. In these studies, imputed genotypes can

be tested directly for association with the phenotype

of interest in the same manner as that used for geno-

types that are measured directly. It may seem as

though the imputed genotypes, because they are

based directly on the measured genotypes, cannot

contain any additional information beyond what is

available from the measured genotypes themselves.

However, in standard association study analysis

techniques, each SNP’s association with the pheno-

type is tested in isolation; including imputed SNPs

effectively allows the researcher to test for associ-

ation between a phenotype and a joint signal from

several neighboring loci. This approach boosts

power for detecting associations between a pheno-

type and variability in a particular region of the gen-

ome [53, 54].

The utility of genotype imputation increases with

the accumulation of population-genetic data: as ref-

erence panels gather more individuals and popula-

tions, the chance increases that similar haplotypes

can be discovered in a reference panel, even for

study individuals with unusual haplotypic patterns.

This success of imputation represents a mile-

stone in applied population genetics, shifting the

focus of genotypic correlations from their use in

describing patterns of LD to their use for genotypic

prediction.

5. (RELATIVE) WINDFALL: POPULATION
STRUCTURE IS NOT A SUFFICIENT
CONDITION FOR PRODUCTION BY
POPULATION STRATIFICATION OF
FALSE POSITIVES IN AN ASSOCIATION
STUDY

When conducting association studies in structured

populations, it is widely recognized that false

positive associations between genotypes and

phenotypes are systematically produced [55–57].

However, confusion has existed regarding the way

in which population structure produces spurious

associations. Population stratification—the charac-

teristic of an association study conducted in a

structured population that enables production of

false positive associations—has been widely

conflated with population structure, a mere

difference in allele frequencies among subgroups

in a population, which can arise when phenomena

such as mutation, genetic drift or local selection lead

to genetic differences between relatively isolated

groups. In a population that consists of distinct sub-

groups, regardless of whether any phenotypes have

been measured, population structure exists when a

difference in allele frequencies occurs among the

subgroups.

In the context of disease–gene association

studies, however, the situation is markedly different.

In a structured population consisting of two sub-

groups, population stratification—that is, spurious

association produced by population structure—

occurs if and only if differences across subgroups

exist in both allele frequencies and disease preva-

lence [58]. The condition of between-subgroup allele

frequency difference, or population structure, is ne-

cessary for spurious associations to be produced,

but it is not sufficient (Fig. 5): a between-subgroup

difference in disease prevalence must also occur.

More generally, if the structured population con-

tains more than two subgroups that differ in allele

frequency, then a disease prevalence difference

across subgroups is not even sufficient to produce

spurious associations: it is further required that a

correlation exist between allele frequencies and dis-

ease prevalence with respect to the sampling

scheme across subgroups [59, 60]. More formally,

considering a collection of populations 1, 2, . . . , I

and denoting the disease prevalence in popula-

tion i by pi, the frequency of a specific allele in

population i by qi, and the prior probability that an

individual in the structured population is drawn

from population i by gi, production of spurious as-

sociations with the allele of interest requires thatPI
i¼1 piqi�i 6¼

PI
i¼1 pi�i

� � PI
i¼1 qi�i

� �
.

Why is population structure insufficient for pro-

duction of spurious associations? Consider the

simplest case of two subgroups. If disease preva-

lence is identical between the populations, then nei-

ther subgroup is overrepresented among either

cases or controls (Fig. 5). If members of the two

subgroups are present in equal proportions in the

affected and control samples, then for loci with no

true association with disease, the allele frequency

differences between the subgroups do not lead to

allele frequency differences between the affected

and control samples.

The dependence of the severity of population

stratification on disease prevalence differences and
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allele frequency differences is captured in a non-

negative parameter d. This parameter measures

the amount of population stratification for a given

marker and disease in an association setting [61, 62],

taking the disease prevalence into account. Thus, in

the same structured population, the magnitude of

population stratification is variable across different

phenotypes. The existence of population structure is

likely to be accompanied by at least some non-trivial

differences in phenotypic prevalences, and as

discussed in the next section, these differences

become more important and potentially problem-

atic as sample sizes increase. Still, it is important

to recognize the distinction between the population-

genetic phenomenon of population structure

and the association-study concept of population

stratification: the existence of structure does not

on its own imply that spurious associations will be

widespread for a given phenotype. It may even be

helpful to view population stratification as simply

one of many potential sources of confounding in

association studies, as we suggest in the next

section. Indeed, current approaches are increasingly

incorporating mixed models that can account for

many types of confounding, including differ-

ent forms of population structure, differences in

relatedness within populations and environmental

effects [63].

A Disease frequencies differ

Population 1 Population 2

Controls Cases

No spurious associations

B Allele frequencies differ

Population 1 Population 2

Controls Cases

No spurious associations

C Disease and allele frequencies differ

Population 1 Population 2

Controls Cases

Allele B overrepresented in cases

D Disease and allele frequencies differ but are not correlated
with respect to the sampling scheme

Population 1 Population 2 Population 3

sesaCslortnoC

No spurious associations

Key

Allele A

Allele B

Controls Cases

Figure 5. Production of spurious associations in a sample containing individuals from multiple populations. The area of

a box is proportional to the frequency represented. (A) Disease frequencies differ across the populations, but allele

frequencies do not differ, and no spurious associations are produced. (B) Allele frequencies at a locus differ across the

populations, but disease frequencies do not differ, and no spurious associations are produced. (C) Disease and allele frequencies

both differ across the populations, and allele B is spuriously associated with disease. (D) Disease and allele frequencies

both differ across the populations, but in a manner that does not satisfy the required condition for production of spurious

associations. With pi, qi, � i representing the disease frequency in population i, the frequency of allele B in population i,

and the prior probability that a sampled individual is drawn from population i, the parameters represented are

(p1,p2,q1,q2,g1,g2)¼ (1/16, 1/4, 1/6, 1/6, 1/2, 1/2) in A, (1/16, 1/16, 1/6, 7/12, 1/2, 1/2) in B, (1/16, 1/4, 1/6, 7/12, 1/2, 1/2)

in C, and following an example of Rosenberg and Nordborg [54], (p1,p2,p3,q1,q2,q3,g1,g2,g3)¼ (1/100, 1/50, 7/100, 1/4, 3/8, 1/3,

1/2, 1/3, 1/6) in D
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6. PITFALL: AS A RESULT OF
POPULATION-GENETIC PHENOMENA,
MARKERS THAT ARE CONSISTENTLY
ASSOCIATED WITH DISEASE IN
MULTIPLE STUDIES ARE NOT
GUARANTEED TO BE CAUSAL OR IN
CLOSE LINKAGE WITH CAUSAL
MUTATIONS

In general, the alternative hypothesis is typically not

identical with the scientific proposition under study,

meaning that if the null hypothesis is false, several

explanations are available in addition to the one that

the study was designed to examine. For clinical

trials, tactics such as randomization and blinding

limit the number of tenable alternative explanations.

In GWA studies, however, the population genetics of

LD produces several ways in which a non-causal site

can be reliably associated with a phenotype in the

population, even when it is not linked to the causal

loci or when the causal loci all have smaller or even

zero association with the phenotype. We refer to

these stably replicable but etiologically misleading

associations as spurious associations. Spurious as-

sociations can be contrasted with genuine associ-

ations, or associations between phenotypes and

variants that are either causal or in close linkage with

causal associations, and with stochastic associ-

ations, or associations between phenotypes and

non-causal variants that arise in individual studies

due to type I error. Spurious associations are like

genuine associations in that they are true features

of the population, but they are like stochastic asso-

ciations in that they provide no insight into etiology

and can divert attention from more productive gen-

omic regions.

As we saw in the previous section, population

stratification is one way in which spurious associ-

ations can arise. Platt et al. [64] note three mechan-

isms by which spurious associations can occur, the

first of which encompasses population stratification:

correlation of the non-causal site with unlinked

causal sites, multiplicity of causal factors and dis-

ease models involving interaction either between

genetic factors or between genetic and environmen-

tal factors. We consider each of these possibilities in

turn.

First, it is possible that a non-causal locus can be

correlated with other loci even in the absence of

linkage between the loci. This does not occur in an

unstructured, infinite population at Hardy–Weinberg

equilibrium, but there are several ways it can happen

in real populations, including genetic drift, inbreeding

and gene conversion [65]. For example, if two

subpopulations are reproductively isolated, then their

allele frequencies drift independently of each other,

leading to allele frequency differences across the gen-

ome. If the two subpopulations are then considered

as one population, there will be correlations between

loci that reflect the differing ways drift has operated in

the two subpopulations. This example is well-known

and is one form of the population structure described

in the previous section. A version of the phenomenon

can also occur with the case-control ascertainment

process, where separate subpopulations of cases

and controls act similarly to partially isolated

subpopulations, leading to correlations between un-

linked loci in a sample even when the loci are not

correlated in the population [66, 67]. Platt et al. give

an additional, more complex hypothetical example

involving pleiotropy and local selection. Consider

two unlinked polymorphisms, one that affects both

skin and eye color and another that affects only skin

color. Suppose further that skin color is under local

selection, such that in some geographic areas, darker

skin is advantageous. In these areas, the frequency of

alleles contributing to darker skin will increase at both

loci, which will lead to correlation between loci when

the whole population is considered. Under these

circumstances, adequately powered studies would

detect an association between eye color and the

locus affecting only skin color. The two loci develop

a correlation because selection elevates the

alleles with the favored effect on skin color in a local

segment of the population, and through this induced

correlation, any phenotype that is influenced by only

one of the two loci will have an association with

both loci.

Second, non-causal sites can also be associated

with phenotypes when phenotypes are influenced

by multiple causal factors. A non-causal marker

that is correlated with two causal factors can be

more strongly associated with the phenotype than

either of the causal factors is, especially when the

causal factors are rare [64]. As an example, take

the situation sketched in Fig. 6A. A non-causal

marker locus has an allele with frequency 2y,

where y is a positive number <1/2. The haplo-

types that include this allele always include exactly

one risk allele that appears at one of two nearby

risk loci, each of which carries a risk allele with

frequency y. If the phenotype of interest is

dictated by the number of risk alleles, then the

marker allele will be perfectly associated with
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the phenotype (r2
¼ 1), but the two causal loci will

each be less strongly associated with disease

status:

r2 ¼
ðy� 2y2Þ

2

yð1� yÞ2yð1� 2yÞ
¼

1� 2y

2� 2y
<

1

2
:

These first two possibilities—correlation with un-

linked markers and multiplicity of causal factors—

can lead to strong spurious associations between

phenotypes and non-causal markers even when it

is assumed that causal factors influence phenotypes

only in an additive way. It is problematic that the

strongest association with the phenotype might

come from a non-causal site, but all is not lost: the

causal loci will also have non-zero associations with

the phenotypes they influence. However, if these as-

sumptions are relaxed to allow interaction of causal

factors in the form of either epistasis or gene–

environment interaction, then non-causal markers

might be associated with the phenotype even while

the true causal factors are not. Consider the haploid

example shown in Fig. 6B. There are two causal loci,

one with alleles A and a, and the other with alleles B

and b. These sites influence a disease phenotype in

an epistatic way, such that an individual with geno-

type AB or ab will develop the disease. Suppose that

1/4 of the population has genotype AB, 1/4 has Ab,

1/4 has aB and 1/4 has ab. Furthermore, suppose

that at a non-causal site, the half of the population

with genotypes AB or ab has one allele C, whereas

the rest of the population has another allele c. In this

case, neither of the true causal loci is associated with

the disease (r2
¼ 0), but the non-causal marker is in

perfect association with it (r2
¼ 1). Thus, in models

allowing for epistasis, causal loci might not be

associated with disease even while non-causal loci

have a strong disease association. The interaction

need not even be a genetic interaction; the example

works in the same way if B and b are viewed as the

possible types of a binary environmental character.

In each of these examples, an association exists at

the population level between a marker unconnected

to disease and potentially not linked along the gen-

ome to causal loci. The associations are not mere

stochastic associations due to type I error but rather

are true features of the population. Though the null

hypothesis of no association between genotypes

and phenotypes is in fact false, spurious associ-

ations divert attention from the genuine, causally

informative associations that interest investigators.

Because increases in sample size increase the power

to identify both genuine and spurious associations

[68], a repeatable, robust association between a

locus and a disease in well-powered, well-designed

studies need not imply that the locus being

examined will be related to the disease, nor need it

even imply that the true causal loci will be detectable

via an intensive search of the surrounding genomic

region.

The extent to which the associations observed in

GWA studies are due to factors other than individ-

ual, closely-linked causal variants is not known.

Dickson et al. [69] argued by simulation that some

GWA signals might be ‘synthetic associations’—

associations occurring between markers and dis-

ease as a byproduct of multiple, potentially distant,

rare, disease-causing variants. This possibility is a

Figure 6. Two types of spurious association outlined by Platt and colleagues [64]. (A) The marker locus (M) is in LD with two risk

loci (R1 and R2). The presence of a risk allele at either risk locus adds one to the phenotype. The case in which an individual has

risk alleles at both loci, and thus the phenotype value is 2, is here assumed not to exist in the population, but the conclusion

remains similar when this assumption is relaxed. In this example, the marker locus is perfectly correlated with the phenotype, but

the actual causal loci have smaller positive correlations with the phenotype. (B) The A/a and B/b loci epistatically determine the

phenotype, and the C/c locus is a non-causal marker. In this extreme example, the marker is perfectly correlated with the

phenotype, but both causal loci are uncorrelated with the phenotype
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special case of the second source of spurious GWA

results described by Platt et al., multiplicity of causal

factors, and it underlies attempts to estimate the

prevalence of rare variants as sources of GWA sig-

nals at more common variants [70, 71]. Synthetic

associations are a plausible factor in contributing

to at least some GWA signals, but their overall im-

portance in explaining GWA signals is unclear

[72–74]. As in the case of the sources of spurious

signals classified by Platt et al., they are theoretically

possible, but their prevalence is unknown. Without

precise knowledge about the prevalence of synthetic

associations, it is useful to remain vigilant about

their possibility. Continuing increases in sample size

and advances in statistical tests for associations

between rare variants and disease [75, 76] will

further enhance direct analyses of rare variants that

could generate synthetic associations. These devel-

opments will likely yield refined association signals

and reduce the amount of research effort targeted at

loci that might be synthetically rather than genuinely

related to disease.

7. PITFALL: BECAUSE HUMANS SHARE
EVOLUTIONARY HISTORY, SEPARATE
GENOME-WIDE ASSOCIATION SAMPLES
ARE NOT FULLY INDEPENDENT

One of the comforts provided by frequentist hypoth-

esis testing is the freedom to choose the false posi-

tive rate. For example, if we run a randomized clinical

trial of a medication, and if our statistical model ac-

curately describes the experimental situation, then

we can specify the probability of concluding that the

null hypothesis is false given that it is actually true.

Powerfully, this principle applies to replications as

well, multiplying the false positive rate across

studies. For example, if we run three independent

clinical trials of separate patients and set the false

positive rate at 0.05 each time, then the probability of

rejecting the null hypothesis in all three trials given

that it is in fact true is only 0.053, or 0.000125. This

situation leads us to be increasingly confident that

null hypotheses that are repeatedly rejected are in

fact false, provided that the models used are appro-

priate and that studies are well-conducted.

Unfortunately, the happy situation of the clinical

trial does not translate entirely intact to the GWA

study. Shared evolutionary history implies that

separate samples are not genetically independent.

Two distinct sets of people from one population who

are enrolled in separate GWA studies are likely to

share at least some of their recent ancestors.

Consequently, some of the mutations and recom-

bination events that led to a (potentially spurious)

association between a variant and a phenotype in

one study might have also occurred in the ancestries

of people from the second study. Thus, the out-

comes of the two studies will be positively

correlated, and the probability of rejecting the null

hypothesis in both studies given that the null hy-

pothesis is true will be greater than the square of

the chosen type I error rate. Repeated replications

of results therefore provide weaker evidence for the

validity of the association than might be expected if

the studies were truly independent.

Working under the assumption that the null hy-

pothesis is false, Rosenberg and VanLiere [77] used

coalescent simulation to show that the probability of

rejecting the null hypothesis separately in each of a

pair of studies is larger than the probability expected

under the hypothesis that the two studies are inde-

pendent, observing a ‘pseudoreplication’ effect

under a variety of conditions on population history

and disease models. It is important to note that

Rosenberg and VanLiere examined power rather

than type I error rates, assuming the null hypothesis

was false rather than true. It remains to examine the

extent to which simple type I errors as well as mis-

leading associations in the framework of Platt et al.

[64] can also be pseudoreplicated. The magnitude

of the pseudoreplication effect in actual studies

is unknown and might be small; even so,

pseudoreplication strikingly illustrates the shift in

perspective that comes from thinking of association

studies population genetically. To the extent that the

samples are related by descent, results from separ-

ate association studies provide less information

than they would were the samples truly independent.

CONCLUSIONS

Unlike linkage mapping, which utilizes co-transmis-

sion of disease with marker alleles in families as a

tool for identifying trait loci, the value of association

mapping traces fundamentally to the population-

genetic properties of study populations. The evolu-

tionary history of populations provides the basis by

which associations between genotypes and traits

are generated and maintained, and it informs the

application and interpretation of statistics used to

discover these associations. Consequently, core

principles of population genetics provide a bedrock

that will always underlie association studies,
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regardless of what shape new methods and

technologies take. Our examples suggest a set of

major features of association study design and in-

terpretation on which population genetics can use-

fully comment:

(1) Population-genetic thinking explains the
sources and types of confounding expected in
association studies (Points 3, 5, 6 and 7).
Confounding is a major focus of epidemi-
ology in general, but the correlation struc-
ture of genetic data generates distinctive
forms of genetic confounding. Individual
genetic variants are inherited in large
pieces of DNA containing many other vari-
ants, and they spread through populations
in ways influenced by selection, migration,
assortative mating and other evolutionary
forces. These phenomena lead to genetic
confounds, and they are fundamental
topics in population genetics. Population
genetics, then, is well-positioned to answer
questions about confounding in associ-
ation studies.

(2) Population-genetic thinking clarifies the rela-
tionships between typed variants and causal
variants in association studies (Points 1, 3
and 6). In association studies, the typed
genetic variants are not necessarily ex-
pected to be the causal variants them-
selves. Under what circumstances will
typed variants reveal the true causal vari-
ants, and when will they fail to do so?
What will be the size and direction of an
observed association between a phenotype
and a tagging variant near a causal variant?
The answers to these questions depend on
the disease model, the statistical proced-
ures used and the distributions of and pat-
terns of associations between genetic
variants and environmental factors in the
populations under study. Population gen-
etics contributes to tools that can integrate
these varied considerations.

(3) Population-genetic thinking reveals the advan-
tages and disadvantages of particular
strategies for tracking genetic variation in as-
sociation studies (Points 1, 2, 3, 4 and 6). In
association studies, one must decide how
to identify, select and measure genetic vari-
ants. Which variants should be chosen?
How frequent should they be, and where
should they be positioned? Can sets of
variants be related to each other? How
should studies for identifying variants be
designed? Must all variants be measured
directly, or can some be imputed? If imput-
ation is used, what kinds of reference
panels should be constructed? Careful
consideration of LD, allele frequency

distributions and population structure—
again, all core topics in population genetics
that are best understood by taking an evo-
lutionary view—is fundamental to address-
ing these questions.

In sum, application of population-genetic prin-

ciples can help to avoid pitfalls and to understand

windfalls in association studies, and as association

mapping continues, it will be partly through thought-

ful investigations of population-genetic and evolu-

tionary processes and their effects on patterns of

variation that further advances will be possible.

GLOSSARY TERMS

Locus. A genetic locus is a specific site along a

chromosome. Loci at which multiple allelic types

exist in a population are termed polymorphic.

Linkage disequilibrium. Non-random association of

alleles at different genetic loci. Suppose we have

two loci, one with alleles A and a, and another

with alleles B and b. Let pA be the frequency of

allele A, pB be the frequency of allele B and pAB be

the joint frequency of A and B, or the probability of

carrying both alleles A and B on a haploid copy of

the genome. The two loci are said to be in LD if

and only if pApB 6¼ pAB. One important factor main-

taining LD is linkage, which occurs when loci are

physically close together on a chromosome and

thus less likely to be separated during transmis-

sion from parent to offspring. However, the pres-

ence of LD between loci does not guarantee that

the loci are linked, nor are linked loci necessarily

in LD [65].

Single-nucleotide polymorphism. A single nucleo-

tide position in the genome at which allelic differ-

ences occur in a population. In principle, it is

possible for a SNP to have two, three or four alleles,

but almost all SNPs with common alleles are

biallelic. We assume here that SNPs are biallelic.

Association study. A type of study in which sites in

the genomes of samples of unrelated individuals are

scanned for statistical association with a phenotype.

In a GWA study, a set of hundreds of thousands or

millions of SNPs drawn from across the genome is

genotyped, and these SNPs are tested for associ-

ation with the phenotype. The SNPs themselves

might not be causally related to the disease, but

might instead be in LD with, and hopefully linked

to, the causal mutations.
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Minor allele. At a locus with two alleles, the minor

allele is the one that is less frequent in the

population.

Haplotype. A haplotype is a combination in an indi-

vidual of the allelic types at a set of loci. The loci

that contribute to a haplotype lie on the same

chromosome.
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APPENDIX: MEASUREMENT ERROR AND
INDIRECT ASSOCIATION TESTING

In this appendix, we give a description of the bias

resulting from measurement error in a simplified

setting. For illustrative purposes, we consider the

case of least-squares linear regression with no

intercept, assuming the variables have been scaled

to have expectations of zero. Similar calculations

could be performed for other analysis frameworks.

Suppose that the dependent variable Y is a linear

function of X, U and e, which are mutually

independent random variables with expectations

equal to zero and finite variance. That is, for all i,

Yi ¼ �1Xi þ �2Ui þ ei

E Xið Þ ¼ E Uið Þ ¼ E eið Þ ¼ 0

E XiUið Þ ¼ E Uieið Þ ¼ E Xieið Þ ¼ 0:

In the association study setting, we can view Y as a

phenotype of interest, X as the allelic state at a causal

locus and U as representing the variability that

remains at a marker locus after conditioning on X.

That is, we can think of a marker locus in LD with X as

X*¼XþU.

Our goal is to estimate �1 from data. Suppose first

that we can measure X without error. The least-

squares estimator of �1 is the choice of �̂1 that

minimizes
Pn

i¼1ðyi � �̂1xiÞ
2. This quantity is

minimized by setting �̂1 ¼

�Pn
i¼1 yixi

	.
�Pn

i¼1 x2
i

	
. The expectation of the least-squares

estimator when X is measured without error is

E �̂1

� 	
¼ E

Pn
i¼1 �1Xi þ �2Ui þ �ið ÞXiPn

i¼1 X2
i

� �

¼ �1E

Pn
i¼1 X2

iPn
i¼1 X2

i

� �
¼ �1:

Thus, when X is measured without error, the least-

squares estimator of �1 is unbiased.

In contrast, consider what happens when X is

measured with error equal to U. That is, instead

of measuring each Xi, we observe X�i ¼ Xi þ Ui.

When �2 ¼ 0, the measurement errors are

independent of the dependent variable, corresponding

to the standard psychometric assumptions discussed

in the main text. When �2 6¼ 0, the measurement

errors are correlated with the dependent variable.

The reliability of X�i as a measurement of Xi is

� ¼ VarðXiÞ=½Var Xið Þ þ Var Uið Þ�.

When we minimize
Pn

i¼1½yi � �̂
�
1 xi þ uið Þ�

2, we

obtain �̂�1 ¼
�Pn

i¼1 yiðxi þ uiÞ

	.�Pn
i¼1ðxi þ uiÞ

2
	

.

The expectation of �̂�1 is then

E �̂�1

� 	
¼ E

"Pn
i¼1 �1Xi þ �2Ui þ �ið ÞðXi þ UiÞPn

i¼1 Xi þ Uið Þ
2

#

¼ E

"Pn
i¼1 �1X2

i þ �2U2
i

� �
Pn

i¼1 Xi þ Uið Þ
2

#

¼ �1 þ ð�2 � �1ÞE

" Pn
i¼1 U2

iPn
i¼1 Xi þ Uið Þ

2

#
:

The first step follows from the mutual independence

of X, U and e, combined with the fact that their

expectations are zero, and the second step follows

from the fact that E XiUið Þ ¼ 0, so

E
hPn

i¼1ðX
2
i þ U2

i Þ

i
¼ E

hPn
i¼1 Xi þ Uið Þ

2
i
. Thus, if

the measurement errors Ui have non-zero variance,
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then the least-squares estimate of the slope �̂�1 is

biased when �1 6¼ �2. The expression inside the

expectation is positive when the measurement

errors have non-zero variance, so when �2 > �1, �̂�1
is biased upward as an estimate of �1, and when

�2 < �1, �̂�1 is biased downward. Note that the

expression inside the expectation is the plug-in

estimator for the proportion of variance in the

observed independent variable that is attributable

to measurement error, or one minus the reliability,

�. The plug-in estimator is asymptotically

consistent. Thus, when the sample size is large,

�̂�1 	 �1 þ ð�2 � �1Þð1� �Þ.

This result sheds light on the apparent

disagreement of Terwilliger and Hiekkalinna [26]

with the work of Pritchard and Przeworski [23].

Pritchard and Przeworski’s results are derived

assuming that the marker locus and the phenotype

are independent after conditioning on the causal

locus, which, in the model used in this appendix,

amounts to assuming �2 ¼ 0. When �2 ¼ 0, the

observed effect size is biased downward to an extent

depending directly on �, where � is equal, in the

association study context, to the r2 measurement

of LD between the marker locus and the causal

locus. In this model, Terwilliger and Hiekkalinna’s

principal complaint is equivalent to noting that

�2 is not guaranteed to equal 0, and when it does

not, Pritchard and Przeworski’s results no longer

hold.
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