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SUMMARY

In familial searching in forensic genetics, a query
DNA profile is tested against a database to determine
whether it represents a relative of a database entrant.
We examine the potential for using linkage disequi-
librium to identify pairs of profiles as belonging
to relatives when the query and database rely on
nonoverlapping genetic markers. Considering data
on individuals genotyped with both microsatellites
used in forensic applications and genome-wide
SNPs, we find that �30%–32% of parent-offspring
pairs and �35%–36% of sib pairs can be identified
from the SNPs of one member of the pair and the
microsatellites of the other. The method suggests
the possibility of performing familial searches of
microsatellite databases using query SNP profiles,
or vice versa. It also reveals that privacy concerns
arising from computations across multiple data-
bases that share no genetic markers in common
entail risks, not only for database entrants, but for
their close relatives as well.

INTRODUCTION

Forensic DNA testing sometimes seeks to identify unknown indi-

viduals through familial searching, or relatedness profiling. When

no exact match of a query DNA profile to a database of profiles is

found, investigators can potentially test for a partial match to

determine whether the query profile might instead represent

a close relative of a person whose profile appears in the data-

base (Bieber et al., 2006; Gershaw et al., 2011; Butler, 2012).

A positive test leads investigators to consider relatives of the

person with the partial match as possible contributors of the

query profile.

Familial searching expands the potential to identify unknown

contributors beyond the level achieved when searching exclu-

sively for exact database matches. The larger set of people

accessible to investigators—database entrants, plus their rela-

tives—can increase the probability that the true contributor of a

query profile is identified (Bieber et al., 2006; Curran and Buckle-

ton, 2008). However, the accessibility of relatives to investigators
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in database queries raises privacy and legal policy concerns, as

considerations guiding appropriate inclusion of DNA profiles in

databases and subsequent use of those profiles generally focus

on the contributors of the profiles rather than on close relatives

who are rendered accessible to investigators (Greely et al.,

2006; Murphy, 2010). Concerns about privacy vary in magnitude

across populations, as false-positive identifications of relatives

might be substantially more likely to affect members of popula-

tions with lower genetic diversity, and hence a greater likelihood

of chance partial matches (Rohlfs et al., 2012, 2013), ormembers

of populations overrepresented in DNA databases (Greely et al.,

2006; Chow-White and Duster, 2011).

Recently, considering genome-wide single-nucleotide poly-

morphisms (SNPs) together with the Combined DNA Index Sys-

tem (CODIS) microsatellite markers used for forensic genetic

databases in the United States and elsewhere (Budowle et al.,

2001; Butler, 2006; Hares, 2015), we studied the possibility of

matching a forensic-genetic record in one database to a profile

on a set of nonoverlapping genetic markers in a different data-

base. We showed that records could be matched between

databases with no overlapping genetic markers, provided that

sufficiently strong linkage disequilibrium (LD) exists between

markers appearing in the two databases (Edge et al., 2017).

The approach could facilitate development of new SNP-based

forensic marker systems that are backward-compatible with

the CODIS microsatellites, as it could enable a query SNP profile

tobe tested for amatch to amicrosatellite databaseor vice versa.

It also uncovers privacy concerns, as an individual present in a

SNP database—collected in a biomedical, genealogical, or per-

sonal genomics setting, for example—might be possible to link to

a CODIS profile, and vice versa, in a manner not intended in the

context of either database examined in isolation. First, a SNP

database entrant could become accessible to forensic inves-

tigation. Second, although in the United States, the use of

forensic geneticmarkers given protections against unreasonable

searches is based partly on a premise that thesemarkers provide

only the capacity for identification and do not expose phenotypic

information (Greely and Kaye, 2013; Katsanis andWagner, 2013;

United States Supreme Court, 2013), phenotypes that are

possible to predict from a SNP profile could potentially be pre-

dicted from a CODIS profile by connecting the CODIS profile to

a SNP profile and then predicting phenotypes from the SNPs.

Does cross-database record matching extend to relatives? In

other words, is it possible to identify a genotype record with one
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Table 1. The Joint Distribution of the Cotterman Identity StateCk

and the Genotype RB[ of Individual B at STR Locus [

STR genotype RB[ of

individual B

Identity state aiai aiaj ; jsi Marginal probability

of identity state Ck

C0 p2
i D0 2pipjD0 D0

C1 p2
i D1 2pipjD1 D1

C2 p2
i D2 2pipjD2 D2

Marginal probability

of genotype RB[

p2
i 2pipj 1

In the three identity states C0 to C2 for individuals A and B, the alleles of

individuals A and B appear as the top and bottom pairs of dots, respec-

tively. Identical-by-descent alleles are connected by lines. The probability

of state Ck is denoted Dk, with
P2

k =0Dk = 1. Genotypes are unordered,

and pi denotes the frequency of allele ai. The marginal probability of state

Ck, PðCkÞ, is obtained by summing over all possible alleles ai and aj at the

locus,
PN[

i =1

PN[

j = iPðRB[ = aiaj ;CkÞ, where N[ is the number of distinct al-

leles at STR locus [. Themarginal probability of genotypeRB[,PðRB[Þ, is a
sum over identity states:

P2
k =0PðRB[;CkÞ.
set of genetic markers as originating from a relative of the

contributor of a genotype record obtained with a distinct,

nonoverlapping set of markers? If so, then new marker systems

in the forensic context could permit relatedness profiling in a

manner that is compatible with existing marker systems, as a

profile from a newSNPor DNA sequence system could be tested

for relationship matches to existing microsatellite profiles. How-

ever, a substantial privacy concern would also be raised, as in-

clusion in a biomedical, genealogical, or personal genomics

dataset could expose relatives of the participant to forensic

investigation; moreover, phenotypes of a relative could poten-

tially be identifiable from a forensic profile.

Here, extending the likelihood framework of Edge et al. (2017)

to accommodate familial relationships, we devise and evaluate

an algorithm for using linkage disequilibrium to perform cross-

database matching of relatives. We assess the performance of

record matching between SNP profiles and microsatellite pro-

files gathered with distinct marker sets, in the case in which

the SNP profile and the microsatellite profile represent distinct

but closely related individuals. The results contribute to the eval-

uation of the genetic privacy of existing forensic marker systems,

as well as to assessment of the potential of familial searching

with new SNP or DNA sequence marker systems that might be

devised in the future.

RESULTS

Likelihood Method
We consider a dataset that contains L microsatellites, or short-

tandem-repeat (STR) loci, each surrounded by an associated
set of neighboring SNPs. For two individuals A and B, we denote

by RA[ the diploid genotype of individual A at STR locus [ and by

SB[ the set of diploid genotypes of individualB at the neighboring

SNP loci associated with STR locus [. Considering all L STR loci,

we let RA be the STR profile of individual A from the STR dataset,

RA = fRA1; RA2;.; RALg, and we let SB be the SNP profile of

individual B from the SNP dataset, SB = fSB1;SB2;.;SBLg.
We characterize the familial relationship between two individ-

uals A and B by the three Cotterman identity coefficients, D0, D1,

and D2, respectively representing the probabilities of three iden-

tity statesC0,C1, andC2 (Jacquard, 1972; Lange, 1997). EachDk

represents the probability that two diploid individuals share k

alleles identically by descent at an autosomal locus (Table 1).

We test a hypothesis that A and B, assumed to be non-inbred,

are related with a relationship defined by an identity coefficient

vector, D = ðD0;D1;D2Þ, against the null hypothesis in which the

two individuals are unrelated. To test the hypothesis, we gener-

alize the log-likelihood-ratio match score of Edge et al. (2017):

lðRA;SBÞ= ln½PðRA jSB;M=DÞ� � ln½PðRAÞ�; (Equation 1)

where M is a variable indicating the hypothesized relationship

between individuals A and B. Edge et al. (2017) assumed that

M represented the hypothesis in which A and B are the same in-

dividual; we consider relationship hypothesesmore generally. As

the natural logarithm of a likelihood ratio, a match score of 10,

for example, represents a value of e10 z 22,026 for the ratio

PðRA jSB;M = DÞ=PðRAÞ.
Assuming independence of the STR loci, so that genotypes at

separate STRs are independent, we can rewrite Equation 1 as a

sum of log-likelihood ratios across STR loci:

lðRA;SBÞ=
XL

[ = 1

½ln½PðRA[ jSB[ ;M=DÞ� � ln½PðRA[ Þ��:

(Equation 2)

The likelihood PðRA[ jSB[;M=DÞ for arbitrary hypotheses D for

the relationship betweenA andB is obtained by a decomposition

over possible values of RB[, the STR genotype of B. The decom-

position, which provides the methodological advance beyond

Edge et al. (2017), considers products of termsPðRA[ jRB[;DÞ re-
flecting the relationship of A and B, and terms PðRB[ jSB[Þ, re-
flecting STR genotype probabilities conditional on surrounding

SNP probabilities. Details appear in the STAR Methods (Over-

view of Match Score Calculation).

Experimental Design
To perform cross-database matching of relatives, we begin from

datasets with NR STR and NS SNP profiles, where some or all of

the profiles in one dataset represent relatives of individuals

whose profiles appear in the other dataset. For each pair of

profiles (RA, SB), one from each dataset, we compute the

match score l(RA, SB) under a specified hypothesis for the rela-

tionship D between the pair. The match-score matrix X is an

NS 3 NR matrix whose (i, j) entry is l(i, j). From the match-score

matrix, we identify matches according to each of four match-

assignment algorithms. For simplicity, we assume NR = NS.
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Figure 1. Schematic forEvaluatingl(RA,SB),

the Match Score for a Pairing of STR Profile

RA of Individual A and SNP Profile SB of Indi-

vidual B, Assuming a Relationship Hypothe-

sis Dtest between Individuals A and B

Because thematch score is a sum of contributions

from L STR loci (Equation 2), we illustrate steps for

computing the match score lðRA[;SB[Þ of a single

locus [.

(A) The data and the hypothesis tested. Consider

individual A with unordered diploid STR genotype

RA[ =5=8 and individual B with SNP profile SB[

around locus [. We seek to test a hypothesis thatA

is a parent of B.

(B) Imputation of the STR in individual B. Given

the SNP profile SB[ of individual B, we use

BEAGLE to estimate the STR genotype probabili-

ties PðRB[ jSB[Þ using a phased training set as a

reference panel.

(C) Conditional probability of the STR genotype of

A given the probabilistically imputed STR geno-

type of B and a test hypothesis Dtest. Under

the hypothesis Dtest, considering all condensed

identity states possible for a pair of individuals

given Dtest, we compute the probability that individual A has the known STR genotype 5/8 conditional on the imputed STR genotype ax=ay : PðRA[ = 5=8 jRB[ =

ax=ay ;DtestÞ. We evaluate this probability for all STR genotypes possible for individual B.

(D) The match score at locus [. Multiplying terms PðRB[ jSB[Þ from (B) and P RA[jRB[;Dtestð Þ from (C) and summing over all possible STR genotypes RB[ of B at

locus [ (Equation 5), we obtainPðRA[ jSB[;DtestÞ, the probability of the STR genotype of individualA at locus [ given the SNP genotype of individualB around locus

[ and the relationship hypothesis. Thematch score of locus [ (the summand in Equation 2) is expressed as a log-likelihood ratio of the test hypothesisDtest and the

null hypothesis that A and B are unrelated. The match scores we use, relying on natural logarithms, can be converted to base-10 logarithms by dividing by

ln 10z2:30, so that a 1,000:1 ratio has match score 6.91 with base e and 3 with base 10.
Relationship Schemes

We used datasets containing genotypes at 13 STR loci and

642,563 SNP loci in 872 Human Genome Diversity Panel individ-

uals (STAR Methods, Experimental Model and Subject Details).

Although our approach applies for arbitrary relationship hypoth-

eses, we focused on close relationships, for which SNPs of

one individual in a relative pair are most likely to contain informa-

tion about STRs of the other and vice versa. Assuming that

individuals were not inbred, we considered three schemes

for Dtrue, the true relationship between individuals in the

STR and SNP datasets: (1) same individual, Dtrue = ð0;0; 1Þ;
(2) parent-offspring, Dtrue = ð0;1;0Þ; and (3) sibling pairs,

Dtrue = 1=ð 4; 1=2; 1=4Þ. For schemes 2 and 3, we simulated ped-

igrees based on the actual genotype data to produce datasets

containing relatives (STAR Methods, Pedigree Generation).

Following Edge et al. (2017), for each scheme for the true rela-

tionship between individuals in the STR and SNP datasets, we

generated 100 random partitions of the individuals into a training

set (75%) and a test set (25%) (STARMethods, Training and Test

Sets). For eachpartition, usingBEAGLE (BrowningandBrowning,

2007, 2016), we phased the training set to produce haplotypes

containing STR loci and their surrounding SNPs (STARMethods,

BEAGLE Settings). Next, as in Edge et al. (2017), we used the

phased training set as a reference and augmented it with the

SNP genotypes of the unphased test set. We then used BEAGLE

to impute STRgenotypes in the test set based on the neighboring

SNPs (STAR Methods, Training and Test Sets).

Once STR genotype probabilities for individuals in the SNP

dataset were obtained by imputation, we computed the match

score (Equation 2) for all possible pairs of individuals, one in
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the SNP dataset and one in the STR dataset, under three rela-

tionship hypotheses: (1) same individual, (2) parent-offspring,

and (3) sib pairs. Letting Dtest denote the hypothesized relation-

ship from which we computed the match score, we considered

nine choices for the pair ðDtrue;DtestÞ. A schematic of the compu-

tation appears in Figure 1.

When the relationship hypothesis tested and the true relation-

ship are the same ðDtrue = DtestÞ, diagonal entries in the match-

score matrix X represent match scores for true relationship

matches, and off-diagonal entries give match scores for unre-

lated individuals. When DtruesDtest, however, the model is mis-

specified; in this case, a diagonal entry gives the match score for

the test hypothesis when two individuals are related but the rela-

tionship hypothesis tested differs from the true relationship. An

off-diagonal entry gives the match score for the test hypothesis

for unrelated individuals.

Match-Assignment Scenarios

Given a match-score matrix X for the pair ðDtrue; DtestÞ, we

considered four matching scenarios: one-to-one matching,

one-to-many matching with a query SNP profile, one-to-many

matching with a query STR profile, and needle-in-haystack

matching (Edge et al., 2017). In one-to-one matching, we as-

sume that it is already known that each profile in the SNP dataset

has exactly one true relative in the STR dataset and vice versa.

To find the pairing of profiles that maximizes the sum of match

scores across all paired profiles, we use the Hungarian algorithm

(Kuhn, 1955) as in Edge et al. (2017). Record-matching accuracy

is the fraction of pairs correctly matched.

In one-to-many matching, we relax the one-to-one correspon-

dence and examine the possibility that an observation in one
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Figure 2. Match Scores of SNP and STR

Profiles in Various Relatedness Settings

Dtrue denotes a true relationship between pairs of

individuals represented on the diagonal of a

matrix, one from a SNP dataset and the other from

an STR dataset.Dtest represents a test relationship

hypothesis from which match scores are

computed. Of 100 random partitions of individuals

into training and test sets, the results from the

partition with median one-to-one record-matching

accuracy are shown. For each ðDtrue;DtestÞ
scheme, we plot the match-score matrix (top) and

the kernel density estimate for match scores

(bottom). The kernel density estimates separately

consider the diagonal entries (true matches) and

the off-diagonal entries (non-matches).

(A) Dtrue, same individual; Dtest, same individual.

(B) Dtrue, same individual; Dtest, parent-offspring.

(C) Dtrue, same individual; Dtest, sib pairs.

(D) Dtrue, parent-offspring; Dtest, same individual.

(E) Dtrue, parent-offspring; Dtest, parent-offspring.

(F) Dtrue, parent-offspring; Dtest, sib pairs.

(G) Dtrue, sib pairs; Dtest, same individual.

(H) Dtrue, sib pairs; Dtest, parent-offspring.

(I) Dtrue, sib pairs; Dtest, sib pairs.
dataset might be identified as having multiple relationship

matches in another dataset. In the case in which a SNP profile

is used as a ‘‘query,’’ for a given SNP profile, the STR profile

with the largest match score is proposed as its match. In other

words, for each row of the match-score matrix, we select the

largest entry in the row. Record-matching accuracy is the frac-

tion of SNP profiles matched to the correct STR profiles. In this

scenario, a SNP profile has exactly one putative STR profile,

but an STR profile can be chosen as the match for multiple

SNP profiles. Similarly, in one-to-many matching with an STR

profile as the query, we select the SNP profile with the largest

match score for the given STR profile: for each column of the

match-score matrix, the largest entry is chosen as a match.

Record-matching accuracy is the fraction of STR profiles

matched to the correct SNP profiles.

In needle-in-haystack matching, unlike in the other scenarios,

we investigate a setting in which a database query is performed

for only one profile. A perfect matching is achieved when no

overlap occurs in the match-score distributions of the correct

relationship matches and the incorrect matches. We quantified

the record-matching accuracy as the proportion of true related-

ness matches with greater match scores than the largest match
score across all non-matching pairs. This

stringent criterion identifies as matches

only those pairs with the highest match

scores.

Record-Matching Accuracy
For each of the three choices of Dtrue, we

considered 100 partitions of the initial

sample into a training set and a test set

(STAR Methods, Training and Test Sets).

For each of the three test hypotheses
Dtest, we then computed thematch score (Equation 2) for all pairs

of profiles in the test set, one from the STR dataset and one from

the SNP dataset. For each pair ðDtrue;DtestÞ, thematch-scorema-

trix corresponding to the median record-matching accuracy

across 100partitions in one-to-onematching appears in Figure 2,

along with the associated distributions of match scores for true

matches and non-matches. Table 2 presents the median, mini-

mum, and maximum accuracies.

When Dtest = ð0;0;1Þ, our generalized match score in Equa-

tion 2 is equivalent to that of Edge et al. (2017) for identifying

the same individual in two disjoint datasets. Our results under

the setting Dtrue =Dtest = ð0;0;1Þ closely follow Edge et al.

(2017). Most match scores for true matches exceed most match

scores for non-matches, so that the diagonal entries of the

match-score matrix have generally larger values than off-diago-

nal entries (Figure 2A). In one-to-one matching, among 100

partitions into the training and test sets, the median record-

matching accuracy is 214 of 218 (98.2%).

WithDtrue = Dtest = ð0;1;0Þ, we search for parent-offspring re-

lationships between a SNP profile and an STR profile. Match

scores for true relationship matches also generally exceed those

for non-matches, so the distribution of diagonal entries is shifted
Cell 175, 848–858, October 18, 2018 851



Table 2. Record-Matching Accuracies between Genome-wide SNP and CODIS STR Profiles

Dtest

Dtrue

Same Individual Parent-Offspring Sib Pairs

Match-Assignment ScenarioMedian Min, Max Median Min, Max Median Min, Max

Same individual 0.982 0.917, 1.000 0.885 0.807, 0.982 0.968 0.908, 1.000 one-to-one

0.908 0.862, 0.950 0.780 0.716, 0.858 0.878 0.830, 0.927 one-to-many: SNP query

0.904 0.830, 0.945 0.780 0.716, 0.844 0.688 0.596, 0.748 one-to-many: STR query

0.431 0.064, 0.697 0.085 0.000, 0.294 0.202 0.018, 0.440 needle-in-haystack

Parent-offspring 0.174 0.101, 0.257 0.312 0.239, 0.440 0.266 0.165, 0.367 one-to-one

0.183 0.083, 0.266 0.303 0.229, 0.422 0.266 0.183, 0.330 one-to-many: SNP query

0.165 0.064, 0.239 0.321 0.220, 0.385 0.275 0.174, 0.358 one-to-many: STR query

0.000 0.000, 0.055 0.018 0.000, 0.092 0.018 0.000, 0.092 needle-in-haystack

Sib pairs 0.294 0.165, 0.450 0.303 0.174, 0.431 0.349 0.229, 0.459 one-to-one

0.284 0.220, 0.367 0.303 0.211, 0.394 0.349 0.248, 0.459 one-to-many: SNP query

0.275 0.183, 0.358 0.303 0.211, 0.413 0.358 0.257, 0.450 one-to-many: STR query

0.028 0.000, 0.110 0.028 0.000, 0.119 0.046 0.000, 0.119 needle-in-haystack

For each of three choices for the true relationship between corresponding profiles in the SNP and STR datasets (Dtrue) and for each of three choices for

the relationship hypothesis tested (Dtest), in each of fourmatch-assignment scenarios (one-to-one, one-to-manywith a query SNP profile, one-to-many

with a query STR profile, and needle-in-haystack), the minimum, median, and maximum accuracies across 100 partitions of the sample into a training

set (75%) and test set (25%) are shown. ForDtrue =Dtest (block-diagonal entries), each entry shows the fraction of individuals correctly matched to their

true relatives. ForDtruesDtest, each entry represents the fraction of individuals matched to their true relatives under a misspecified relationship hypoth-

esisDtest. See Tables S1 and S2 for corresponding analyses with 17-STR and 20-STRmarker sets, and Table S3 for an analysis that considers ancestry

information. An analysis of the partitions underlying the table with an expanded set of relationship hypotheses appears in Figure S1.
toward higher values compared to the distribution of off-diago-

nal entries (Figure 2E). The distinction between diagonal and

off-diagonal entries is not as great as when profiles represent

the same individual rather than parent-offspring pairs. The me-

dian record-matching accuracy for one-to-one matching is

31.2% (34 of 109 individuals).

The case of sib-pair relationships between SNP and STR pro-

files, Dtrue =Dtest = 1=ð 4;1=2;1=4Þ (Figure 2I), is similar to the

case of parent-offspring relationships. Diagonal and off-diagonal

match-score matrix entries are differentiated, though not as

strongly as in matching profiles from the same individual. The

median record-matching accuracy for one-to-one matching is

34.9% (38 of 109 individuals).

Model Misspecification
Considering the six ðDtrue;DtestÞ pairs with DtruesDtest, we

observe that record-matchingaccuracies formisspecified test hy-

pothesesaregenerally lower than in corresponding caseswith the

test hypothesis correctly specified (Figure 2; Table 2). The value of

Dtrue has a stronger influence on record-matching than doesDtest;

for example, higher accuracies are seen when SNP and STR pro-

files truly represent the same individual and the test hypothesis is

misspecified to search for relative pairs, compared with lower ac-

curacieswhen profiles represent relatives and the test hypothesis

is misspecified to search for exact matches.

For Dtrue = ð0;0;1Þ, compared to 98.2% median accuracy

when Dtrue = Dtest, median accuracy is 88.5% when parent-

offspring matches are sought instead of exact matches and

96.8% when sib-pair matches are sought. For Dtrue = ð0; 1; 0Þ,
compared to 31.2% median accuracy when Dtrue = Dtest,

median accuracy is 17.4% for the exact-match test hy-

pothesis and 26.6% for the sib-pair test hypothesis. For

Dtrue = 1=ð 4; 1=2; 1=4Þ, compared to 34.9% median accuracy
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when Dtrue = Dtest, median accuracy is 29.4% when seeking

exact matches and 30.3% when seeking parent-offspring

matches.

Match-Assignment Threshold
The number of false-positive matches can be decreased by

setting a minimum match-score threshold below which records

are left unpaired. This threshold represents a minimum level of

stringency specified for identification of matches. For each of

the fourmatch-assignment scenarios, the proportions of correct,

incorrect, and unassigned profiles with a varying threshold

appear in Figure 3 for the partitions with the minimum, median,

and maximum record-matching accuracies.

When Dtrue = Dtest = ð0;0;1Þ, in the median-accuracy parti-

tion in one-to-one matching, as the threshold is decreased,

164 of 218 (75.2%) profiles are correctly matched before an

incorrect match is made (top left plot in Figure 3A). The corre-

sponding values are 113 (51.8%) for the minimum-accuracy

partition and 218 (100%) for the maximum-accuracy partition.

With a decreasing threshold, the minimum-, median-, and

maximum-accuracy partitions accurately match 106 (48.6%),

126 (57.8%), and 149 (68.3%) of 218 query SNP profiles (top

right plot in Figure 3A), and 112 (51.4%), 154 (70.6%), and 184

(84.4%) of 218 query STR profiles (bottom left plot in Figure 3A),

respectively, before an incorrect assignment occurs. In needle-

in-haystack matching, in which all matches are incorrect after

the first incorrect match, the median partition has 43.1% (94 of

218) accuracy (bottom right plot in Figure 3A). The minimum

and maximum accuracies are 6.4% (14 of 218) and 69.7% (152

of 218), respectively.

For the parent-offspring caseDtrue = Dtest = ð0;1; 0Þ, few pairs

are correctlymatched before the first incorrectmatch (Figure 3E).

With a threshold that permits false-positives, however, many
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Figure 3. Proportions of Profiles Correctly Assigned, Incorrectly Assigned, and Unassigned with a Varying Match-Score Threshold

For each group of four plots, four match-assignment scenarios are shown: one-to-one matching (top left), one-to-many matching querying a SNP profile and

selecting an STR profile with the highest match score (top right), one-to-one matching querying an STR profile and selecting a SNP profile with the highest match

score (bottom left), and needle-in-haystack matching, counting the proportion of true matches with match scores exceeding the match scores of all non-

matching pairs (bottom right). In each triangle, when the threshold is large, all profiles are unassigned (lower left vertex). Lowering the threshold leads to

assignment of all profiles, tracing a curve to the right edge of the triangle. In needle-in-haystackmatching, all putativematches have greater match scores than all

putative non-matches; thus, once the match-score threshold falls below the largest match score among true non-matches, the number of correct matches

remains constant, and the number of incorrect assignments increases while the number of unassigned profiles decreases. For eachmatch-assignment scenario,

we plot results from partitions with theminimum,median, andmaximum record-matching accuracy across 100 partitions of the sample into training and test sets.

(A) Dtrue, same individual; Dtest, same individual.

(B) Dtrue, same individual; Dtest, parent-offspring.

(C) Dtrue, same individual; Dtest, sib pairs.

(D) Dtrue, parent-offspring; Dtest, same individual.

(E) Dtrue, parent-offspring; Dtest, parent-offspring.

(F) Dtrue, parent-offspring; Dtest, sib pairs.

(G) Dtrue, sib pairs; Dtest, same individual.

(H) Dtrue, sib pairs; Dtest, parent-offspring.

(I) Dtrue, sib pairs; Dtest, sib pairs. In (A), (E), and (I), Dtrue = Dtest. Correct pairs are matched with their true relationship, and incorrect pairs are unrelated but

erroneously matched as related. In (B)–(D) and (F)–(H), DtruesDtest. ‘‘Correct’’ pairs are true relatives, but the hypothesized relationship is incorrect; ‘‘incorrect’’

pairs are non-relatives inferred to have the relationship in the test hypothesis.
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relative pairs are matched correctly: in one-to-one matching,

minimum, median, and maximum accuracy are 26 (23.9%), 34

(31.2%), and 48 (44.0%) of 109 profiles, respectively. In one-

to-many matching with a SNP query, these values are 25

(22.9%), 33 (30.3%), and 46 (42.2%) of 109, and they are 24

(22.0%), 35 (32.1%), and 42 (38.5%) of 109 for query STR pro-

files. Needle-in-haystack matching ranges from a minimum

of 0 correct matches to a maximum of 10 (9.2%), with a median

of 2 (1.8%).

Similar values to the parent–offspring case are obtained

for Dtrue =Dtest = 1=ð 4;1=2;1=4Þ, the sib-pair case (Figure 3I).

Although even a stringent threshold produces false-positives,

many relationships are identified. In one-to-one matching, mini-

mum, median, and maximum record-matching accuracy are 25

(22.9%), 38 (34.9%), and 50 (45.9%) of 109 profiles, respectively.

Corresponding values are 27 (24.8%), 38 (34.9%), and 50

(45.9%) of 109 for one-to-many matching with query SNP pro-

files, and 28 (25.7%), 39 (35.8%), and 49 (45.0%) of 109 for query

STR profiles. For needle-in-haystack matching, the minimum,

median, and maximum are 0, 5 (4.6%), and 13 (11.9%) correct

matches of 109, respectively.

As was observed in one-to-one matching, comparing corre-

sponding panels within the rows of Figure 3, in one-to-many

matching with a query SNP profile, one-to-many matching with

a query STR profile, and needle-in-haystack matching, the re-

cord-matching accuracy with a misspecified test hypothesis is

smaller than that seen with the correctly specified hypothesis

(Figures 3B–3D and 3F–3H). Corresponding minimum, median,

and maximum accuracies are similar under the misspecified hy-

pothesis, as are the trajectories obtained as the match-score

threshold decreases.

Additional STRs
We evaluated the dependence of the record-matching accuracy

on the number of STR loci by repeating our analyseswith random

sets of non-CODIS STRs. For each of the three choices of Dtrue,

considering the median-accuracy partition depicted in Figures

2A, 2E, and 2I, we examined the record-matching accuracy for

100 randomly chosen sets of L loci, with L= 5;10;15;.;100

(STAR Methods, Additional STRs).

For each pair ðDtrue;DtestÞ and each of the four match-assign-

ment algorithms, Figure 4 depicts the median record-matching

accuracy across the 100 locus sets. A comparison of panels

within rows of the figure finds that record-matching accuracy

is greater for one-to-one matching than for the two one-to-

many matching scenarios, which in turn have higher accuracy

than the needle-in-haystack scenario. In all panels, accuracy

increases with the number of loci, nearing 100% when

examining one-to-one and one-to-many matching with 100

loci, and exceeding 80% for needle-in-haystack matching with

Dtrue = Dtest. The comparatively lower accuracy seen with the

13 CODIS loci is a consequence of the relatively small size of

the CODIS STR panel rather than a limit of the record matching

technique.

Comparing panels within columns, accuracy is greater for

SNP and STR profiles in which Dtrue represents exact matches

(Figure 4A) than in cases with parent-offspring (Figure 4B) and

sib-pair (Figure 4C) relationships. The correctly specified hy-
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pothesis produces greater accuracy than the two misspecified

hypotheses, with the highest accuracy occurring for the same-

individual hypothesis for Dtest in the panels of Figure 4A, for the

parent-offspring hypothesis in Figure 4B, and for the sib-pair hy-

pothesis in Figure 4C.

DISCUSSION

We have found that not only can STR and SNP records be iden-

tified as belonging to the same individual, in many cases, STR

and SNP profiles can be identified as belonging to close rela-

tives—even though the profiles have no markers shared in com-

mon (Table 2). In one-to-one and one-to-many matching,

record-matching accuracies were 30%–32% for identification

of parent-offspring pairs and 35%–36% for identification of sib

pairs, increasing toward 100% as the number of markers in the

STR profile was increased to 100 (Figure 4).

The record-matching accuracies for parent-offspring pairs

and sib pairs—relationships with the same overall kinship coef-

ficient—were lower than the accuracies observed for STR and

SNP profiles originating from the same individual. Record-

matching of profiles from relatives is weakened because STR al-

leles in one profile of a pair and the neighboring SNP haplotypes

in the other profile need not have been co-inherited from the

same ancestor.

Interestingly, when the relatedness hypothesis tested was

misspecified, the reduction in accuracy was relatively small.

Parent-offspring pairs were identified by record matching with

a sib-pair hypothesis for the relationship with accuracy 27%–

28% for one-to-one and one-to-many matching, and sib pairs

were identified with a parent-offspring hypothesis with 30% ac-

curacy (Table 2). Pairs of relatives were also revealed by record

matching when searching for exact matches, although with

slightly lower accuracies of 17%–18% for parent-offspring pairs

and 28%–29% for sib pairs. These results suggest that in prac-

tical settings in which the true relationship between profiles of in-

terest to match is unknown, relative pairs will often be identified

even when testing an incorrect relationship hypothesis.

This study contributes to a growing body of work on inference

of genetic relationships in scenarios more challenging than when

relatives are typed for the same markers (Vohr et al., 2015;

Snyder-Mackler et al., 2016; Dou et al., 2017; Martin et al.,

2017; Theunert et al., 2017; Kuhn et al., 2018). In the setting of

ancient DNA, Vohr et al. (2015) focused on the scenario in which

DNA sequence data are generated for different DNA samples

possibly representing the same or related individuals—from a

burial site, for example—but are sufficiently sparse that reads

do not necessarily overlap between samples. In a computation

centered on detecting samples representing the same individual,

Vohr et al. (2015) could distinguish simulated parent-offspring

pairs and sib pairs from unrelated pairs; this computation

amounts to demonstrating that under a same-individual hypoth-

esis for Dtest, pairs with a parent–offspring or sib relationship for

Dtrue were uncovered. A second study formally estimating relat-

edness from sparse sequence data while making use of LD be-

tween sites with data available in different sampled individuals

was able to identify second- and third-degree relative pairs

(Dou et al., 2017). These various studies use forms of genetic
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Figure 4. Record-Matching Accuracy as a Function of the Number of STRs

For each number of loci at intervals of 5 loci, 100 random locus sets are analyzed for the data partition in Figure 2.

(A) Dtrue, same individual.

(B) Dtrue, parent-offspring.

(C)Dtrue, sib pairs. In each of the 12 plots representing a choice ofDtrue and amatch-assignment algorithm, three lines are shown, representing themedian record-

matching accuracy across 100 loci for each of three choices of Dtest.
data other than STRs and SNPs, highlighting that the potential

for record matching with relatives extends in principle to any

data types with sufficient LD between marker sets.

The potential to perform familial searching of forensic STR pro-

files in SNP databases generates both opportunities and privacy

risks. Because accuracy was 30%–36% for identification of first-

degree relatives rather than above 90% as was seen for paired

profiles from the same individuals, identification of relatives by

record matching with our one-to-one and one-to-many algo-

rithms will be possible in fewer cases. However, if a match to a

particular query STR profile is of interest, an algorithm can be

envisioned in which many top SNP database hits are further

explored—by additional genotyping of contributors for whom

DNA is available or by genealogical tracing of relatives of the

contributors to uncover exact matches (Figure 5A). A relaxed ac-

curacy measure in such a setting could therefore tabulate true

matches that have high match scores (but not necessarily the

highest) or that differ in score from the highest value by less
than a specified constant. Although accuracy with larger marker

panels depends on the specific loci considered and such vari-

ables as their recombination context, it can increase substan-

tially even with relatively few additional STRs (Figure 4). As of

2017, new CODIS profiles consider 20 markers including the

original 13 (Hares, 2015); when we repeat our analysis using

the original 13 markers together with 4 markers from the 2017

update, accuracy rates for identification of first-degree relatives

increase from 30%–36% to 43%–51% (Table S1), and when we

add to the 17 markers sets of 3 random markers to mimic the

20-locus CODIS set, they are 48%–54% (Table S2).

Record matching of pairs of relatives between STR and

SNP databases has a significant impact on genetic privacy. In

addition to magnifying the exposure of the relatives of SNP-pro-

file contributors to forensic identification, it also increases the

phenotypic reach of STR profiles. CODIS genotypes of one

individual could potentially be associated with genomic SNP

genotypes of a relative, which could, in turn, reveal phenotypes
Cell 175, 848–858, October 18, 2018 855



A No exact matches or relatedness matches
observed in STR databases

elbaliavatoneliforpPNSelbaliavaeliforpPNS

DNA available DNA not available

Obtain SNP profile

Test SNP profile against
SNP databases

with exact-match and
relationship hypotheses

Test STR profile against
SNP databases

via record-matching
with exact-match and

relationship hypotheses

Perform genealogical and other
non-genetic investigations of

suggestive matches

B Record-matching
with exact-match

hypotheses

Genotype-
phenotype
matching

Relatedness
profiling Record-matching

with relationship
hypotheses

Forensic STRs
in individual X

Genome-wide SNPs
in individual X

Phenotypes
in individual X

Forensic STRs
in close relatives

of individual X

Genome-wide SNPs
in close relatives

of individual X

Figure 5. Possible Investigative Scenarios

and Information Exposures for Record-

Matching Methods

(A) Investigative scenarios. The figure presents a

possible workflow if no exact or relationship

matches to a query STR profile are observed in

STR databases.

(B) Information exposures. Forms of information

in the boxes can potentially be obtained from

each other via the methods described along the

associated arrows. In both panels, the record-

matching method newly introduced in this article

appears in bold.
of that relative—possibly through record-matching between

phenotypes and SNP genotypes (Broman et al., 2015; Humbert

et al., 2015). Thus, with access to SNP databases, the informa-

tion contained in a CODIS profile would extend far beyond its

value for the identification of its contributor to also include

genome-wide genetic data and phenotypic information about

relatives of that contributor (Figure 5B).

The possibility of performing familial searching of forensic

profiles in SNP databases, while raising new concerns, also al-

ters an existing concern, namely the unequal representation of

populations in forensic databases. In profile queries to search

for a relative already in a forensic database, populations over-

represented in databases owing to overrepresentation in crim-

inal justice systems are likely to produce more identifications,

potentially contributing to further overrepresentation (Greely

et al., 2006; Chow-White and Duster, 2011; Rohlfs et al.,

2013). Record-matching queries to biomedical, genealogical,

or personal-genomic databases, however, will instead produce

more identifications in different populations emphasized in

genome-wide association and personal genomics (Chow-White

and Duster, 2011; Popejoy and Fullerton, 2016; Landry

et al., 2017).

We have focused only on identifying true relationshipmatches,

and not on excluding pairs of STR and SNP profiles as potential

matches. The indirectness of record-matching can lead to low

match scores for some true relative pairs, as can misspecifica-

tion of the relationship hypothesis; thus, a low match score

might not reliably exclude a pair as relatives. We also have not
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analyzed record-matching accuracy by

geographic region of origin of the individ-

uals. Although the effect of geographic

ancestry on record-matching in the

same-individual scheme was limited,

owing to similar effects of ancestry on

match scores for true matches and non-

matching individuals (Edge et al., 2017),

relatedness profiling has been seen to

produce varying accuracy by population

(Rohlfs et al., 2012, 2013) and might do

so in record-matching as well.

The performance of the method will

likely decrease with larger test sets that

number in the thousands or millions. In

large samples, the method will benefit
from increased accuracy in inferring the LD pattern in the

training set. However, larger test sets will reduce accuracy by

generating larger numbers of possible matches. Accuracy im-

provements might be possible through the use of complete

DNA sequence surrounding STRs, permitting improved phasing

or prioritization in imputation of specific SNPs that have the

highest LD with the STRs. In addition, although we have

emphasized parent-offspring and sib-pair relationships, our

mathematical framework permits computations with arbitrary

relationship hypotheses more generally. For example, in Fig-

ure S1, we illustrate the use of test hypotheses across a grid

of possible values to identify the value for Dtest that generates

the highest match score for a specific SNP profile and STR pro-

file; thus, in principle, relationships between profiles could first

be estimated and match accuracies then computed with esti-

mated relationships. Attention to ancestry information in rela-

tionship estimation—as well as in phasing and imputation—

can potentially improve inference in these steps (Conrad

et al., 2006; Huang et al., 2009; Li et al., 2009; Manichaikul

et al., 2010; Thornton et al., 2012; Moltke and Albrechtsen,

2014; Conomos et al., 2016), providing further opportunities

to increase record-matching accuracy. Indeed, an analysis

separating individuals by geographic region for pedigree con-

struction, using region-specific allele frequencies in match-

score calculations, and restricting attention to region-specific

candidate matches (Table S3) suggests higher match accu-

racies than are seen in corresponding calculations that do not

consider ancestry (Table 2).



For record-matching of SNP and STR profiles with more

distant relationships than in the parent-offspring and sib-pair

cases, accuracy will be lower in the same manner that it is

reduced for parent-offspring and sib-pair schemes compared

to the case of matching profiles from the same individual. Never-

theless, this study contributes to growing understanding of the

extent of the information contained in individual genotype

profiles when those genotypes are analyzed together with data-

bases of genotypes of other individuals, finding that that informa-

tion can be considerable, both about the individuals typed and

about their close relatives.
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Software and Algorithms

BEAGLE 4.1 Browning and Browning, 2007, 2016 https://faculty.washington.edu/browning/beagle/b4_1.html

Custom computer code This paper Available from the Lead Contact upon request

Other

Genotype data Edge et al., 2017 http://rosenberglab.stanford.edu/diversity.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, including computer code implementing themathematical formulas used in this study,

should be directed to and will be fulfilled by the lead contact, Noah A. Rosenberg (noahr@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The data consisted of diploid genotypes of 872 individuals typed for 642,563 autosomal SNP loci, 13 autosomal STR loci from the

CODIS panel, 431 additional autosomal tetranucleotide STR loci and 1 trinuclotide locus, D22S1045, which appeared in the 2017

CODIS update (Hares, 2015). We used the same datasets as Edge et al. (2017), representing 52 worldwide populations in the Human

Genome Diversity Panel, and containing no pairs of close relatives. Geographic regions and associated sample sizes followed Edge

et al. (2017) (Africa, 76; Europe, 151; Middle East, 155; Central/South Asia, 198; East Asia, 227; Oceania, 26; America, 39).

METHOD DETAILS

BEAGLE Settings
Inference of haplotype phase and imputation of STR genotypes were performed using BEAGLE v4.1 (Browning and Browning, 2007,

2016). For each STR marker, we considered in BEAGLE 1-Mb SNP windows extending 500 kb in each direction from the STR

midpoint.

For phasing, which we performed in two different steps—one prior to pedigree generation, and another for phasing training sets—

we used the default number of 10 iterations in BEAGLE, and we used default BEAGLE phasing parameters: maxlr = 5,000, lowmem =

false, window = 50,000, overlap = 3,000, impute = true, cluster = 0.005, ne = 1 million, err = 0.0001, seed = �99,999, and models-

cale = 0.8.

We also used BEAGLE for imputation in test sets using phased training sets as reference data, employing a linkage map based on

GRCh36 coordinates and the same parameters as in phasing, except gprobs = true and maxlr = 1 million.

Pedigree Generation
Prior to generating pedigrees, we first phased the entire dataset (‘‘BEAGLE Settings’’) to obtain individual haplotypes for use in pedi-

gree generation. Next, we chose pairs of individuals without replacement to obtain 436 parental pairs from the 872 sampled individ-

uals. For each parental pair, we simulated two offspring. Assuming a 1 cM/Mb recombination rate, recombination would be expected

to affect 1% of meioses when considering 1-Mb windows; for simplicity, we assumed that our 1-Mb window size was small enough

that no recombination occurred within windows, so that these 1%ofmeioses produced haplotypes transmitted intact in nuclear ped-

igrees. STR loci were treated as independent, so that assortment was independent across STRs.

Once pedigrees were generated, we dephased haplotypes, randomizing allele orders within individuals to hide phase information.

We generated 10 sets of random pedigrees, each containing a distinct pairing of the 872 individuals into parental pairs. We used the

same 10 sets in the parent–offspring and sib-pair schemes.

Training and Test Sets
Following Edge et al. (2017), we partitioned our dataset into a training set with 75% of the individuals and a test set of size 25%. For

our ‘‘same individuals’’ computations, 654 of 872 individuals were assigned to the training set, and the other 218 to the test set. For
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these computations, we generated 100 random training–test partitions. We then imputed STR genotypes in the test set with the

training set as a reference (‘‘BEAGLE Settings’’), constructing a 2183218 match-score matrix to match imputed STR genotypes

in the test set to actual test-set STR genotypes.

For the parent–offspring scheme, without loss of generality, we placed parent genotypes in the SNP dataset and offspring geno-

types in the STR dataset. For each of the 10 sets of random pedigrees, we generated 10 random partitions into training and test sets,

for a total of 100 training–test partitions. Each partition contained a training set of 75% of the pedigrees (327 pedigrees) and a test set

with the other 25% (109 pedigrees). For each partition, we phased the training set (‘‘BEAGLE Settings’’), including only the 654

parental individuals in the computation, to produce a phased reference panel. To produce a test set, from each test-set pedigree,

we chose one parent and one offspring, creating 109 parent–offspring pairs. We then imputed STR genotypes of parents in the

test set with the training set as a reference (‘‘BEAGLE Settings’’) and constructed a 1093109 match-score matrix to match the

imputed STR genotypes of parents in the test set to STR genotypes of offspring in the test set.

For the sib-pair scheme, as in the parent–offspring scheme, we generated 10 random partitions of each of the 10 sets of random

pedigrees to produce 100 training–test partitions. For each partition, we assigned 75%of the pedigrees to the training set and 25% to

the test set. Next, we took the parents from each training-set pedigree to form a training set that we then phased (‘‘BEAGLE Set-

tings’’). For a test set, a set of 109 siblings, each randomly selected from a pedigree, was used for the SNP dataset, and the remaining

109 siblings acted as an STR dataset. We imputed STR genotypes of the sibs in the test set with the training set as a reference

(‘‘BEAGLE Settings’’) and constructed a 1093109 match-score matrix to match the imputed STR genotypes in the half of the sibs

treated as having SNP data in the test set to the STR genotypes of the other half of the sibs in the test set.

Allele frequencies for match score computations were obtained from the training set for the exact-match calculations, and from the

parents in the training set for the parent–offspring and sib-pair calculations. In selecting median-accuracy partitions, we chose the

lesser of two possible median values among 100 partitions.

Additional STRs
We scanned numbers of loci from 5 to 100 with an increment of 5. From 431 non-CODIS tetranucleotide STR loci, we initially gener-

ated 100 sets of 100 random loci. For each set of loci, we recursively selected subsequent sets of loci with fewer loci at random so that

the newly selected set of loci was nested in the previous set.

For each of the three true relationships (same individual, parent–offspring, sib pairs), we selected a partition and a pedigree set

corresponding to the median one-to-one record-matching accuracy in the case of Dtrue =Dtest (Figures 2A, 2E, and 2I). We then

ran our record-matching computations for each of the 100 sets of non-CODIS STR loci, considering each of the three test hypotheses

(same individual, parent–offspring, sib pairs) and each of the four match-assignment scenarios (one-to-one, one-to-many with SNP

query, one-to-many with STR query, needle-in-haystack).

QUANTIFICATION AND STATISTICAL ANALYSIS

Overview of Match Score Calculation
To calculate the match score of Equation 1 under an arbitrary relatedness hypothesis D, we must calculate the probability of STR

profileRA given SNP profileSB and the relatedness hypothesisM=D for individualsA andB,PðRA jSB;M = DÞ, and the unconditional

probability of RA, PðRAÞ.
Assuming independence of STR loci, the probabilities of STR profiles are obtained as products across loci,

PðRA jSB;M=DÞ=
YL
[ = 1

PðRA[ jSB[ ;M=DÞ (3)
PðRAÞ=
YL
[ = 1

PðRA[ Þ: (4)
PðRA[Þ is calculated as the Hardy-Weinberg frequency of genoty
pes at locus [.

To evaluate PðRA[ jSB[;DÞ in Equation 3, the probability for an individual A to have STR genotype RA[ at locus [, conditional on a

relative B having SNP genotype SB[ and relationship D = ðD0;D1;D2Þ, we sum over all values of RB[ inℛ[, the set of all possible un-

ordered diploid genotypes at STR locus [:

PðRA[ jSB[ ;DÞ=
X

RB[˛ℛ[

PðRA[ jRB[ ;DÞPðRB[ jSB[ Þ: (5)
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PðRB[ jSB[;D = ð0;0;1ÞÞ, orPðRB[ jSB[Þ for short, is the probability for an individualBwith SNP genotype SB[ at locus [ to have STR

genotypeRB[ at locus [. We used BEAGLE to estimate the imputation probability for STR genotypeRB[ given surrounding SNP profile

SB[ in the same individual (see ‘‘BEAGLE Settings’’).

To obtainPðRA[ jRB[;DÞ for arbitraryD, we denote the unordered STR genotypes of individualsA andB at locus [ byRA[ = aman and

RB[ = arat, respectively. Alleles am, an, ar , and at have allele frequencies pm, pn, pr , and pt, respectively, and they are not necessarily

distinct. We decompose PðRA[ jRB[;DÞ by conditioning on all possible identity states Ck describing the pair of individuals A and B

(Table 1):

PðRA[ = aman jRB[ = arat;DÞ=
X2

k = 0

PðRA[ = aman jCk ;RB[ = aratÞ PðCk jRB[ = arat;DÞ: (6)
To evaluate the summands, we consider two separate cases: (1) i
ndividual B is heterozygous, and (2) individual B is homozygous. In

each case, we assume Hardy-Weinberg genotype frequencies at locus [.

Individual B is Heterozygous: arsat
Using the joint probability distribution of Ck and the genotype of the individual B (Table 1), a state Ck has probability:

PðCk jRB[ = arat;DÞ=PðCk ;RB[ = arat jDÞ
PðRB[ = arat jDÞ =

2prptDk

2prpt

=Dk : (7)

To evaluate Equation 6, it remains to compute PðRA[ jCk ;RB[ = aratÞ for each identity state Ck , k = 0; 1; 2. For the remainder of the

case of B heterozygous, we treat m, n, r, and t as distinct.

C0: No alleles in A are identical by descent (IBD) with an allele in B. Hence, genotype probabilities in A follow Hardy-Weinberg

frequencies:

PðRA[ jC0;RB[ = aratÞ=

8>>>>>>>><
>>>>>>>>:

p2
r RA[ = arar

p2
t RA[ = atat

p2
m RA[ = amam

2prpt RA[ = arat
2prpm RA[ = aram
2ptpm RA[ = atam
2pmpn RA[ = aman:

(8)

C1: The only identity-by-descent relationship is between one allele ofA and one allele ofB. Thus,A can have genotype either arav or

atav, where av can be any allele in the population. Because ar and at have the same probability of being the allele of B that is IBD with

an allele in A, we have:

PðRA[ jC1;RB[ = aratÞ=

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

1

2
pr RA[ = arar

1

2
pt RA[ = atat

1

2
pr +

1

2
pt RA[ = arat

1

2
pm RA[ = aram

1

2
pm RA[ = atam

0 otherwise:

(9)

C2: One allele ofA is IBDwith one allele fromB, and the other allele fromA is IBDwith the other allele fromB. Thus,A andB have the

same unordered genotype: aman = arat:

PðRA[ jC2;RB[ = aratÞ=
�
1 RA[ = arat
0 otherwise:

(10)
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Combining Equations 7, 8, 9, and 10, for heterozygous RB[, with r, t, m, and n all distinct and RB[ = arat, we have:

(11)
In this matrix notation, each row represents a probability for a pa
rticular choice of RA[, summing across cases C0, C1, and C2. The

distinct alleles am and an refer to alleles different from ar and at. We use notation Trtðx; yÞ to represent the quantity associated with

RA[ = axay in Equation 11.

Individual B is Homozygous: ar = at
When B is homozygous with genotype arar , using Table 1, the identity state Ck has probability:

PðCk jRB[ = arar ;DÞ=PðCk ;RB[ = arar jDÞ
PðRB[ = arar jDÞ =

p2
rDk

p2
r

=Dk : (12)

C0: None of the alleles are IBD, and A can have any possible genotype:

PðRA[ jC0;RB[ = ararÞ=

8>><
>>:

p2
r RA[ = arar

p2
m RA[ = amam

2prpm RA[ = aram
2pmpn RA[ = aman:

(13)

C1: One allele of A is IBD with one allele of B, and remaining alleles of A and B have no identity by descent. Because B is homo-

zygous with genotype arar , A has genotype arav, where av is any possible allele:

PðRA[ jC1;RB[ = ararÞ=
8<
:

pr RA[ = arar
pm RA[ = aram
0 otherwise:

(14)

C2: One allele in A is IBD with one allele in B, and the other allele in A is IBD with the other allele in B. A therefore has the same

genotype as B:

PðRA[ jC2;RB[ = ararÞ=
�
1 RA[ = arar
0 otherwise:

(15)

Combining all cases, from Equations 12, 13, 14, and 15, with am, an, and ar all distinct and RB[ = arar , we obtain:

(16)
Here, the alleles am and an are distinct and indicate any alleles di
fferent from ar . We use notation Hrrðx; yÞ to represent the quantity

associated with RA[ = axay in Equation 16.
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Completing the Calculation
We can now expand Equation 3 for arbitrary relationshipsM = D. LetN[ denote the number of distinct alleles possible at STR locus [,

and index these alleles by fa1;a2;.;aN[
g. From Equations 5, 11, and 16, recalling thatPðRB[ jSB[Þ is obtained from BEAGLE, we have

PðRA jSB;M=DÞ=
YL
[ = 1

PðRA[ = am[
an[ jSB[ ;DÞ

=
YL
[ = 1

XN[

t[ = 1

Xt[
r[ = 1

PðRB[ = ar[at[ jSB[ ÞPðRA[ = am[
an[ jRB[ = ar[at[ ;DÞ

=
YL
[ = 1

XN[

t[ = 1

Xt[
r[ = 1

½PðRB[ = ar[at[ jSB[ ÞðTr[ t[ ðm[ ;n[ Þð1� dr[ t[ Þ+Hr[ r[ ðm[ ;n[ Þdr[ t[ Þ�:

(17)
In the last step, we use the Kronecker delta to combine the hetero
zygous case of Equation 11 and the homozygous case of Equation

16 into a single equation.
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Supplemental Figures

A B C

Figure S1. Choices ofDtest that Produce the Highest Match Score in Comparisons of Genome-wide SNP and CODIS STR Profiles, Related to

Table 2

We examined a grid of 65 hypotheses Dtest in the Thompson (1976) region of points ðD0;D1;D2Þ that represent actual relationships between non-inbred pairs of

individuals (right side of the curved line), considering a mesh of width 1=16 for D0, D1, and D2. For each of the 100 partitions studied in Table 2, for each of the 218

or 109 individuals in the test set (218 for exact-match, 109 for parent–offspring and sib pairs), we identified the hypothesized relationshipDtest that maximized the

match score. For each Dtrue, for each Dtest value, the percentage of the 21,800 or 10,900 cases producing that Dtest as the maximizing value is plotted. The

location ofDtrue is marked in blue. (A)Dtrue = ð0; 0; 1Þ, same individual. (B)Dtrue = ð0; 1; 0Þ, parent–offspring. (C)Dtrue = 1=ð 4; 1=2; 1=4Þ, sib pairs. The single values

ofDtest that maximize the match score for more than 7% of cases do so for 50.8%, 28.6%, and 11.0% of cases in (A), (B), and (C), respectively. In (A) and (B), this

value of Dtest accords with Dtrue; in (C), it misspecifies sib pairs as parent–offspring pairs.
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