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Figure S1. Properties of DAPC inferences for K=4 clusters. (A-D) DAPC inferences. Each sampled individual is 
represented by a vertical line. Colors represent clusters, and the length of the line segment displayed in a color is 
proportional to the estimated membership for the associated cluster. (A) CODIS loci. BDAPC=0.868, SDAPC=0.684, 
TDAPC=0.838. (B) 13-locus null dataset. BDAPC=0.548, SDAPC=0.479, TDAPC=0.374. (C) 13 random non-CODIS 
tetranucleotide markers. BDAPC=0.867, SDAPC=0.677, TDAPC=0.841. (D) 779 non-CODIS loci. BDAPC=1.000, 
SDAPC=1.000, TDAPC=1.000. For (B) and (C), the solution shown has the median S among 1000 runs. (E-G) 
Distributions of three indices describing DAPC inferences. The value for the CODIS loci (dashed lines) appears 
together with the distributions for 1000 solutions using random sets of 13 non-CODIS loci (histogram). (E) 
Clusteredness BDAPC. (F) Similarity-to-full-data SDAPC. (G) Sorting accuracy TDAPC. The percentile for the CODIS loci 
is 54.1 for BDAPC, 60.7 for SDAPC, and 64.4 for TDAPC. The figure design follows Figure 2.  



 
 

Table S1. B and S percentiles of the median STRUCTURE replicate using the CODIS loci in relation to the 
distribution from runs with 1000 random sets of 13 non-CODIS loci. The K=4 median-S replicate is plotted in 
Figure 2A. 
 

K Clusteredness B Similarity S 
2  36.8 48.8 
3 46.6 12.1 
4 53.4 51.8 
5 49.5 45.7 
6 38.3 42.4 

 
   



 
 

Table S2. Mean confusion matrices sorting 978 individuals into K=4 clusters using the CODIS loci. For the top 
(STRUCTURE-based) matrix, the value of T is 74%; the median T is 75% across 1000 random 13-locus sets and 27% 
across 1000 null datasets. For the bottom (DAPC-based) matrix, the value of TDAPC is 84%; the median TDAPC is 82% 
across 1000 random 13-locus sets and 36% across 1000 null datasets. The matrices summarize STRUCTURE and 
DAPC inferences of the form plotted in Figures 2A-2D and S1A-S1D. 
 

STRUCTURE-based confusion matrix 
 Cluster 1  

(orange) 
Cluster 2  
(blue) 

Cluster 3  
(pink) 

Cluster 4  
(violet) 

Total Sorting 
accuracy (%) 

Africa 85.4 2.7 3.1 2.8 94 90.9 
Western Eurasia 101.5 275.3 78.7 76.6 532 51.7 
East Asia/Pacific 29.9 16.8 172.7 49.6 269 64.2 
America 1.6 1.6 5.9 73.8 83 88.9 

DAPC-based confusion matrix 
 Cluster 1  

(orange) 
Cluster 2  
(blue) 

Cluster 3  
(pink) 

Cluster 4  
(violet) 

Total Sorting 
accuracy (%) 

Africa 72 20 2 0 94 76.6 
Western Eurasia 5 490 35 2 532 92.1 
East Asia/Pacific 1 54 211 3 269 78.4 
America 0 7 3 73 83 88.0 

   



 
 

Table S3. ࢀࡿࡲതതതതത –adjusted correlations between measures of individual identifiability and population 
identifiability for 1000 random sets of 13 non-CODIS loci. For convenience, the correlation between ܪഥ and ܯഥ  is 
copied from the top (STRUCTURE) to the bottom (DAPC) part of the table. The partial correlations adjust the 
correlations that appear in Figure 3 and Table S4 for ܨௌ்തതതത. 
 

 Diversity measures STRUCTURE-based measures 
of ancestry information at K=4 

ഥܯ  ഥܪ    ܶ  ܵ  ܤ  

 ഥ   -0.97 0.51 0.36 0.21ܪ
ഥܯ     -0.55 -0.39 -0.23 
 0.58 0.75     ܤ
ܵ      0.89 
 Diversity measures DAPC-based measures of 

ancestry information at K=4 

ഥܯ  ഥܪ  ୈ୅୔େ  ܵୈ୅୔େܤ   ୈܶ୅୔େ

 ഥ   -0.97 0.44 0.47 0.39ܪ
ഥܯ     -0.45 -0.48 -0.41 
 ୈ୅୔େ     0.91 0.74ܤ
ܵୈ୅୔େ      0.88 

 

   



 
 

Table S4. Correlations between measures of individual identifiability and DAPC-based measures of 
population identifiability for 1000 random sets of 13 non-CODIS loci. The table reports analogous correlations to 
those that appear in Figure 3, and for convenience, it copies from that figure the correlations between ܪഥ, ܯഥ , and ܨௌ்തതതത. 
 

 Diversity 
measures 

Variance 
partition 

DAPC-based measures of 
ancestry information at K=4 

ഥܯ  ഥܪ  ୈ୅୔େܤ  ௌ்തതതതܨ   ܵୈ୅୔େ ୈܶ୅୔େ

 **ഥ   -0.97** -0.14* 0.28** 0.29** 0.23ܪ
ഥܯ     0.11* -0.31** -0.31** -0.26** 
 **ௌ்തതതത     0.56** 0.60** 0.58ܨ
 **ୈ୅୔େ      0.94** 0.83ܤ
ܵୈ୅୔େ       0.92** 

*p<0.05. 
**p<0.001. 
   



 
 

Table S5. Correlations between STRUCTURE-based and DAPC-based measures of population identifiability 
for 1000 random sets of 13 non-CODIS loci. The table provides correlations of the values that appear in the 
histograms in Figures 2E-2G and S1E-S1G. 
 

 STRUCTURE-based measures  
of ancestry information at K=4 

DAPC-based measures  
of ancestry information at K=4 

   ܤ ܵ  ܶ  ୈ୅୔େܤ ܵୈ୅୔େ ୈܶ୅୔େ

 0.71 0.73 0.70 0.71 0.87  ܤ
ܵ   0.91 0.67 0.69 0.67 
ܶ    0.51 0.54 0.57 

 ୈ୅୔େ      0.94 0.83ܤ
ܵୈ୅୔େ       0.92 

 

   



 
 

Supplemental Experimental Procedures 
 
Data 
Samples were drawn from the Human Genome Diversity Panel (HGDP-CEPH) H1048 subset [S1]. In classifying 
individuals as in past studies [S2-S6], the sample set included 94 people from Sub-Saharan Africa, 155 from Europe, 
206 from Central and South Asia, 171 from the Middle East, 234 from East Asia, 35 from Oceania, and 83 from the 
Americas. 

We combined 783 previously studied microsatellites [S4] with the 13 autosomal CODIS loci; CODIS genotypes 
were produced by Bode Technology Group (Lorton, VA) using the Promega PowerPlex 16 HS System. Four loci 
appeared in both marker sets; we discarded them from the data of [S4]. Locus-wise missing data ranged from 0% to 
12.2% (mean 3.6% across the 792 loci). CODIS loci had no missing data.  

Note that the non-CODIS loci are comparable to the CODIS loci in being highly polymorphic, widely spaced, and 
generally non-genic [S7]. Even the more closely spaced among them are generally pairwise-independent, producing 
negligible linkage disequilibrium in unstructured populations [S8]. 
 
Heterozygosity H 
We computed locus-specific heterozygosity using the standard unbiased estimator [S9]  
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where N is the diploid sample size, J is the number of alleles at the locus, and pj is the frequency of allele j. Allele 
frequencies were estimated excluding individuals with missing data. For locus sets, we evaluated ܪഥ, the mean H 
across loci. 
 
Match probability M 
We calculated the locus-specific diploid random match probability as [S10,S11]  
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For sets of loci, we computed ܯഥ , the geometric mean of M. The product of M values across loci directly measures a 
random match probability for a panel; the geometric rather than arithmetic mean reflects the contribution of a typical 
locus. 
 
FST 
We computed FST as the sum of among-region and among-population-within-region variance components in a three-
level hierarchical partition. This partition, performed with the estimators of [S9] at each locus, considered 
individuals as distributed across the seven geographic regions. ܨௌ்തതതത values for locus sets were obtained by averaging 
estimates across loci. 
 
STRUCTURE 
We conducted unsupervised model-based clustering using STRUCTURE 2.3.4 [S12,S13], employing an admixture 
model with correlated allele frequencies in 20,000 steps, 10,000 of which were allocated to burn-in. We set 
parameters  and  to 1. 

To produce “null” datasets with no ancestry information, we permuted alleles at each of the CODIS loci 
independently, not preserving co-occurrences of allele pairs within individuals or co-occurrences within individuals 
of genotypes across loci. This procedure amounts to applying Hardy-Weinberg and linkage equilibrium, holding 
allele frequencies constant.  

K=4 was the largest K for which, in CODIS analyses, each cluster consistently had individuals for which 
membership in the cluster exceeded that in other clusters. K=4 was also inferred with the ΔK [S14] (ΔK(4)=3.1; next 
was ΔK(3)=1.6) and Pr(K=k|X) [S12] statistics (Pr(K=4|X)≈1). The latter measure was computed using the median 
Pr(X|K=k) from 1000 runs, employing CLUMPAK [S15]. STRUCTURE solutions were plotted using DISTRUCT [S16], 
considering the “median” run for the purpose of plotting as the 500th smallest value among 1000. 
 
 
 
 



 
 

Clusteredness B 
Given I individuals and K clusters, STRUCTURE estimates an I×K matrix of membership coefficients. The 
membership for individual i in cluster k is qik. B is calculated from a STRUCTURE solution without reference to other 
solutions [S4]: 
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Similarity S 
Following [S17], the similarity S measures concordance of a target STRUCTURE solution with comparison solutions 
at the same K. Let Q1, Q2, …, QL be membership matrices from STRUCTURE runs on the full dataset. Using ܩᇱ for 
the similarity measure in eq. 6 of [S17], the similarity to the comparison matrices of a target matrix R of the same 
dimensions is 
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The superscript P indicates that columns of Ql have been permuted in the way that maximizes similarity between Ql 
and R [S17]. 
 
Sorting accuracy T 
The sorting accuracy T measures the extent to which STRUCTURE placed individuals in clusters together with other 
members of the same geographic region. For each of the 100 STRUCTURE replicates at K=4 with all 779 non-CODIS 
loci, the cluster with the largest membership coefficient was identified for each individual. Next, we determined 
which of the seven geographic regions “co-clustered,” where two regions co-cluster if pluralities of individuals 
belonging separately to the two regions sort into the same cluster. The same co-clustering pattern occurred in all 100 
replicates, producing four super-regions.  

For each STRUCTURE solution estimated using the CODIS markers or 13 random loci, we constructed a confusion 
matrix W, where Wi,j is the number of individuals from super-region i placed into cluster j. We associated each 
cluster bijectively with one of the four super-regions by permuting columns of W to maximize the number of 
correctly classified individuals, ∑ ௜ܹ,௜

ସ
௜ୀଵ . Then 
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T is the mean frequency with which individuals in a super-region sort into the cluster associated with that super-
region. 
 
Correlations 
We assessed significance of correlations involving H, M, and FST by permutation, separately permuting locus-wise 
values of H, M, and FST appearing in the 1000 sets of 13 random markers. After applying the permutation, we 
recomputed ܪഥ, ܯഥ  ௌ்തതതത, and the Pearson correlations for the 1000 sets. We examined permutation distributions withܨ ,
10,000 permutations. In comparisons of two among ܪഥ, ܯഥ , and ܨௌ்തതതത, independently permuted values were used for 
both statistics. Because B, S, and T are not derived from locus-level information, for significance tests involving two 
among B, S, and T, we instead compared correlations to a N(0, 0.062) distribution. This distribution was chosen 
conservatively by noting that permutation distributions of correlations with ܪഥ, ܯഥ , and ܨௌ்തതതത were roughly normal with 
means near 0 and smaller standard deviations, 0.048 to 0.057. 

To compute partial correlations, we regressed ܪഥ, ܯഥ , B, S, and T for each set of 13 markers on ܨௌ்തതതത. We then 
evaluated Pearson correlations of residuals from these five least-squares linear regressions. 
 
Principal component analysis 
We used principal component analysis (PCA) to produce population structure estimates in a parallel manner to that 
used in our STRUCTURE analysis. For PCA with multiallelic markers, we placed each distinct allelic type in its own 
column in the input data matrix [S18]. In this matrix, each individual was represented by a row, and the entry for a 
row and column was the number of copies of an allelic type present in the associated individual. Missing entries 
were imputed as the column mean of non-missing values [S19]. Prior to running PCA, we centered and standardized 
columns to have mean 0 and variance 1 [S20,S21]. 



 
 

To facilitate comparison with STRUCTURE, we post-processed PCA output using linear discriminant analysis 
(LDA), as applied for population genetics in the discriminant analysis of principal components approach (DAPC 
[S19]). This method converts each vector of principal components (PCs) representing an individual into a vector of 
membership probabilities in clusters estimated by LDA from the set of individual PC vectors. Prior to implementing 
LDA, we performed dimensionality reduction on PC vectors, considering only the PCs associated with the largest 
eigenvalues required for obtaining 90% of the variance in the initial data matrix [S22]. In parallel to our STRUCTURE 
analysis, we applied LDA to produce membership probabilities in K=4 clusters. We implemented our PCA and LDA 
analyses using the ADEGENET package in R [S23,S24]. 

We applied DAPC to the CODIS set, the non-CODIS set, 1000 null datasets, and the same 1000 random non-
CODIS datasets used in the STRUCTURE analysis. Because the procedure is deterministic—unlike in the stochastic 
STRUCTURE analysis—we performed only one replicate DAPC with each marker set. 

The matrix of membership probabilities estimated with DAPC, containing an estimated membership probability 
for each individual in each cluster, is analogous to STRUCTURE-based membership estimates. We therefore 
computed values of B, S, and T from the DAPC solutions in the same manner as in the computations with 
STRUCTURE, propagating the values through analyses parallel to those performed with STRUCTURE-based B, S, and T 
and employing the same pipeline. To distinguish DAPC-based measures from STRUCTURE-based measures, we 
denote DAPC-based measures by BDAPC, SDAPC, and TDAPC. 
 
PCA-STRUCTURE comparisons 
PCA-based ancestry information measures produce similar patterns to those observed with STRUCTURE. First, 
ancestry information is notable with PCA; as in the STRUCTURE analysis, PCA-based inferences are visually similar 
for the CODIS loci and random non-CODIS sets (Figure S1A-S1D). Measures analogous to B, S, and T, computed 
using PCA in place of STRUCTURE for the CODIS loci, lie near medians of their respective distributions across 
random sets (Figure S1E-S1G). The value of TDAPC for PCA, making assignments by applying linear discriminant 
analysis to PCA coordinates, is 84% (Table S2). Across super-regions, assignment accuracy is greatest for Western 
Eurasia, the lowest-accuracy super-region for STRUCTURE. 

Correlations of PCA-based BDAPC, SDAPC, and TDAPC with ܪഥ, ܯഥ , and ܨௌ்തതതത follow the patterns observed using 
STRUCTURE-based B, S, and T, with positive values observed between the ancestry information in PCA-based BDAPC, 
SDAPC, and TDAPC and individual identifiability assessed with ܪഥ and ܯഥ  (Table S4). As was seen with STRUCTURE-
based B, S, and T, the relationship between information about identity and PCA-based BDAPC, SDAPC, and TDAPC 
becomes stronger after partial-correlation adjustment for ܨௌ்തതതത (Table S3). The parallel evidence of a relationship 
between individual and population identifiability for STRUCTURE-based and PCA-based population structure 
analyses is reflected in high correlations between the STRUCTURE-based B, S, and T and the analogous PCA-based 
BDAPC, SDAPC, and TDAPC (Table S5).  
 
Ancestry studies 
The main text notes that among studies at the intersection of forensic genetics and genetic ancestry, some focus on 
use of statistical measures of marker information content to propose marker panels suitable for ancestry inference, 
whereas others evaluate the ancestry information for established marker sets such as the CODIS loci. An expanded 
list of studies in the former class, panel-design, includes [S25-S44]. An expanded list for the latter class, evaluations, 
includes [S35,S41,S45-S55]. 
 

  



 
 

Supplemental References 
 
[S1] Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, 

accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70:841-847. 
[S2] Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic 

structure of human populations. Science 298:2381-2385. 
[S3] Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of 

ancestry. Am J Hum Genet 73:1402-1422. 
[S4] Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW (2005) Clines, clusters, 

and the effect of study design on the inference of human population structure. PLoS Genet 1:660-671. 
[S5] Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, 

Guerreiro R, et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. 
Nature 451:998-1003. 

[S6] Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, 
Cavalli-Sforza LL, et al. (2008) Worldwide human relationships inferred from genome-wide patterns of 
variation. Science 319:1100-1104. 

[S7] Ghebranious N, Vaske D, Yu A, Zhao C, Marth G, Weber JL (2003) STRP screening sets for the human 
genome at 5 cM density. BMC Genomics 4:6. 

[S8] Rosenberg NA, Calabrese PP (2004) Polyploid and multilocus extensions of the Wahlund inequality. Theor 
Popul Biol 66:381-391. 

[S9] Weir BS (1996) Genetic Data Analysis II. Sunderland, MA: Sinauer. 
[S10] Jacquard A (1974) The Genetic Structure of Populations. New York: Springer. 
[S11] Chakraborty R, Jin L (1993) Determination of relatedness between individuals using DNA fingerprinting. 

Hum Biol 65:875-895. 
[S12] Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype 

data. Genetics 155:945-959. 
[S13] Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: 

linked loci and correlated allele frequencies. Genetics 164:1567-1587. 
[S14] Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software 

STRUCTURE: a simulation study. Mol Ecol 14:2611-2620. 
[S15] Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for 

identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resources 
15:1179-1191. 

[S16] Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 
4:137-138. 

[S17] Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with 
label switching and multimodality in analysis of population structure. Bioinformatics 23:1801-1806. 

[S18] Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton, NJ: 
Princeton University Press. 

[S19] Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for 
the analysis of genetically structured populations. BMC Genet 11:94. 

[S20] Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic 
variation. Nature Genet 40:646-649. 

[S21] François O, Currat M, Ray N, Han E, Excoffier L, Novembre J (2010) Principal component analysis under 
population genetic models of range expansion and admixture. Mol Biol Evol 27:1257-1268.  

[S22] Jolliffe IT (2002) Principal Component Analysis, 2nd ed. New York: Springer-Verlag. 
[S23] Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 

24:1403-1405. 
[S24] Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide data. Bioinformatics 

27:3070-3071. 
[S25] Frudakis T, Venkateswarlu K, Thomas MJ, Gaskin Z, Ginjupalli S, Gunturi S, Ponnuswamy V, Natarajan S, 

Nachimuthu PK (2003) A classifier for the SNP-based inference of ancestry. J Forensic Sci 48:771-782. 
[S26] Rosenberg NA (2005) Algorithms for selecting informative marker panels for population assignment. J 

Comput Biol 12:1183-1201. 
  



 
 

[S27] Yang N, Li H, Criswell L, Gregersen P, Alarcon-Riquelme M, Kittles R, Shigeta R, Silva G, Patel P, Belmont 
J, et al. (2005) Examination of ancestry and ethnic affiliation using highly informative diallelic DNA 
markers: application to diverse and admixed populations and implications for clinical epidemiology and 
forensic medicine. Hum Genet 118:382-392. 

[S28] Lao O, van Duijn K, Kersbergen P, de Knijff P, Kayser M (2006) Proportioning whole-genome single-
nucleotide–polymorphism diversity for the identification of geographic population structure and genetic 
ancestry. Am J Hum Genet 78:680-690. 

[S29] Paschou P, Ziv E, Burchard EG, Choudhry S, Rodriguez-Cintron W, Mahoney MW, Drineas P (2007) PCA-
correlated SNPs for structure identification in worldwide human populations. PLoS Genet 3:1672-1686. 

[S30] Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Álvarez-Dios J, Calaza M, Casares de Cal M, 
Ballard D, Lareu, MV, et al. (2007) Inferring ancestral origin using a single multiplex assay of ancestry-
informative marker SNPs. Forensic Sci Int Genet 1:273-280. 

[S31] Halder I, Shriver M, Thomas M, Fernandez JR, Frudakis T (2008) A panel of ancestry informative markers 
for estimating individual biogeographical ancestry and admixture from four continents: utility and 
applications. Hum Mutat 29:648-658. 

[S32] Kersbergen P, van Duijn K, Kloosterman AD, den Dunnen JT, Kayser M, de Knijff P (2009) Developing a 
set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet 10:69. 

[S33] Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G, Kittles R, Alarcon-Riquelme ME, Gregersen PK, 
Belmont JW, et al. (2009) Ancestry informative marker Sets for determining continental origin and admixture 
proportions in common populations in America. Hum Mutat 30:69-78. 

[S34] Nassir R, Kosoy R, Tian C, White PA, Butler LM, Silva G, Kittles R, Alarcon-Riquelme ME, Gregersen PK, 
Belmont JW, et al. (2009) An ancestry informative marker set for determining continental origin: validation 
and extension using human genome diversity panels. BMC Genet 10:39. 

[S35] Londin ER, Keller MA, Maista C, Smith G, Mamounas LA, Zhang R, Madore SJ, Gwinn K, Corriveau RA 
(2010) CoAIMs: A cost-effective panel of ancestry informative markers for determining continental origins. 
PLoS One 5:e13443. 

[S36] Paschou P, Lewis J, Javed A, Drineas P (2010) Ancestry informative markers for fine-scale individual 
assignment to worldwide populations. J Med Genet 47:835-847. 

[S37] Ding L, Wiener H, Abebe T, Altaye M, Go RCP, Kercsmar C, Grabowski G, Martin, LJ, Khurana Hershey 
GK, Chakorborty R, et al. (2011) Comparison of measures of marker informativeness for ancestry and 
admixture mapping. BMC Genomics 12:622. 

[S38] Kidd KK, Speed WC, Pakstis AJ, Kidd JR (2011) The search for better markers for forensic ancestry 
inference. In 22nd International Symposium on Human Identification (National Harbor, Maryland: Promega 
Corporation), pp. 1-4. 

[S39] Galanter JM, Fernandez-Lopez JC, Gignoux CR, Barnholtz-Sloan J, Fernandez-Rozadilla C, Via M, Hidalgo-
Miranda A, Contreras AV, Figueroa LU, Raska P, et al. (2012) Development of a panel of genome-wide 
ancestry informative markers to study admixture throughout the Americas. PLoS Genet 8:e1002554. 

[S40] Nievergelt CM, Maihofer AX, Shekhtman T, Libiger O, Wang X, Kidd KK, Kidd JR (2013) Inference of 
human continental origin and admixture proportions using a highly discriminative ancestry informative 41-
SNP panel. Investig Genet 4:13. 

[S41] Phillips C, Fernandez-Formoso L, Gelabert-Besada M, Garcia-Magariños M, Santos C, Fondevila M, 
Carracedo Á, Lareu MV (2013) Development of a novel forensic STR multiplex for ancestry analysis and 
extended identity testing. Electrophoresis 34:1151-1162. 

[S42] Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang R, Madbouly A, Maiers M, Middha M, Friedlaender FR, 
Kidd JR (2014) Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet 
10:23-32. 

[S43] Phillips C, Parson W, Lundsberg B, Santos C, Freire-Aradas A, Torres M, Eduardoff M, Børsting C, 
Johansen P, Fondevila M, et al. (2014) Building a forensic ancestry panel from the ground up: The 
EUROFORGEN Global AIM-SNP set. Forensic Sci Int Genet 11:13-25. 

[S44] Phillips C, Amigo J, Carracedo Á, Lareu MV (2015) Tetra-allelic SNPs: Informative forensic markers 
compiled from public whole-genome sequence data. Forensic Sci Int Genet 19:100-106. 

[S45] Evett IW, Pinchin R, Buffery C (1992) An investigation of the feasibility of inferring ethnic origin from DNA 
profiles. J Forensic Sci Soc 32:301-306. 

[S46] Chakraborty R, Stivers DN, Su B, Zhong Y, Budowle B (1999) The utility of short tandem repeat loci beyond 
human identification: implications for development of new DNA typing systems. Electrophoresis 20:1682-
1696. 



 
 

[S47] Lowe AL, Urquhart A, Foreman LA, Evett IW (2001) Inferring ethnic origin by means of an STR profile. 
Forensic Sci Int 119:17-22. 

[S48] Klintschar M, Füredi S, Egyed B, Reichenpfader B, Kleiber M (2003) Estimating the ethnic origin (EEO) of 
individuals using short tandem repeat loci of forensic relevance. International Congress Series 1239:53-56. 

[S49] Sun G, McGarvey ST, Bayoumi R, Mulligan CJ, Barrantes R, Raskin S, Zhong Y, Akey J, Chakraborty R, 
Deka R (2003) Global genetic variation at nine short tandem repeat loci and implications on forensic genetics. 
Eur J Hum Genet 11:39-49. 

[S50] Barnholtz-Sloan JS, Pfaff CL, Chakraborty R, Long JC (2005) Informativeness of the CODIS STR loci for 
admixture analysis. J Forensic Sci 50:1322-1326. 

[S51] Graydon M, Cholette F, Ng LK (2009) Inferring ethnicity using 15 autosomal STR loci—comparisons among 
populations of similar and distinctly different physical traits. Forensic Sci Int Genet 3:251-254. 

[S52] Pereira L, Alshamali F, Andreassen R, Ballard R, Chantratita W, Cho NS, Coudray C, Dugoujon JM, 
Espinoza M, Gonzalez-Andrade F, et al. (2011) PopAffiliator: online calculator for individual affiliation to a 
major population group based on 17 autosomal short tandem repeat genotype profile. Int J Legal Med 
125:629-636. 

[S53] Phillips C, Fernandez-Formoso L, Garcia-Magarinos M, Porras L, Tvedebrink T, Amigo J, Fondevila M, 
Gomez-Tato A, Alvarez-Dios J, Freire-Aradas A, et al. (2011) Analysis of global variability in 15 established 
and 5 new European Standard Set (ESS) STRs using the CEPH human genome diversity panel. Forensic Sci 
Int Genet 5:155-169. 

[S54] Silva NM, Pereira L, Poloni ES, Currat M (2012) Human neutral genetic variation and forensic STR data. 
PLoS One 7:e49666. 

[S55] Phillips C, Gelabert-Besada M, Fernandez-Formoso L, García-Magariños M, Santos C, Fondevila M, Ballard 
D, Court DS, Carracedo Á, Lareu MV (2014) “New turns from old STaRs”: enhancing the capabilities of 
forensic short tandem repeat analysis. Electrophoresis 35:3173-3187. 


