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Researchers in many fields have considered the meaning of two results about genetic variation for
concepts of “race.” First, at most genetic loci, apportionments of human genetic diversity find that
worldwide populations are genetically similar. Second, when multiple genetic loci are examined, it is
possible to distinguish people with ancestry from different geographical regions. These two results raise
an important question about human phenotypic diversity: To what extent do populations typically differ
on phenotypes determined by multiple genetic loci? It might be expected that such phenotypes follow
the pattern of similarity observed at individual loci. Alternatively, because they have a multilocus genetic
architecture, they might follow the pattern of greater differentiation suggested by multilocus ancestry
inference. To address the question, we extend a well-known classification model of Edwards (2003) by
adding a selectively neutral quantitative trait. Using the extended model, we show, in line with previous
work in quantitative genetics, that regardless of how many genetic loci influence the trait, one neutral
trait is approximately as informative about ancestry as a single genetic locus. The results support the
relevance of single-locus genetic-diversity partitioning for predictions about phenotypic diversity.

� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Going back to Lewontin’s 1972 study of human genetic diversity,
many investigators have reported that at typical genetic loci, most
of the allelic variation in statistical partitions of human genetic
variation is “within,” rather than “between,” populations (e.g.
Barbujani, Magagni, Minch, & Cavalli-Sforza, 1997; Brown &
Armelagos, 2001; Li et al., 2008; Rosenberg et al., 2002; Rosenberg,
Pritchard, et al., 2003). Many of these studies presented their re-
sults as estimates of FST, a quantity that can be interpreted as the
proportion of allelic variancedthat is, variance in a binary random
variable representing the presence or absence of a specific allele-
dattributable to differences in allele frequencies between pop-
ulations (Holsinger & Weir, 2009). Estimates of worldwide human
FST and FST-like quantities have ranged from w0.05 (e.g. Rosenberg
. D., & Rosenberg, N. A., Imp
rsity, Studies in History and
et al., 2002) to w0.15 (e.g. Barbujani et al., 1997), meaning that 5e
15% of allelic variance at a representative locus is due to between-
population differences in allele frequenciesdor, equivalently, that
85e95% lies in the within-population variance component.

In spite of this result, which shows that human groups have
similar allele frequencies at most variable loci, it is possible to infer
the continental ancestry of individual people using genetic data
alone (e.g. Bamshad et al., 2003; Bowcock et al., 1994; Mountain &
Cavalli-Sforza, 1997; Rosenberg et al., 2002; Tang et al., 2005).
Ancestry inference is performed by pooling information frommany
loci. Each locus provides only a small amount of information about
population membership, but when many loci are used, their in-
formation can be combined to distinguish among potential
ancestries.

In 2003, A. W. F. Edwards provided a particularly clear expla-
nation of the way in which multiple loci can be used to classify
accurately even when each individual locus is only weakly infor-
mative (Edwards, 2003). Edwards’ point was not newdit appeared
in earlier arguments about allelic-variance partitioning and
lications of the apportionment of human genetic diversity for the
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classification (e.g., Mitton, 1977; Neel, 1981; Smouse, Spielman, &
Park, 1982)dbut he used an accessible model that clarified the
result.

What do single-locus variance partitioning and multilocus
classification studies lead us to expect about phenotypic differences
between human populations? The finding that human groups have
similar allele frequencies at most genetic loci has been used to
support arguments that most large, genetically-based phenotypic
differences between groups are exceptions to the genomic rule
(e.g., Brown & Armelagos, 2001; Feldman & Lewontin, 2008;
Goodman, 2000). Indeed, single-locus partitioning studies do
suggest that human populations will not differ widely on most
traits controlled by a single genetic locus. But the fact that classi-
fication is possible using many loci seems to suggest that human
groupsmight differ more substantially on traits influenced bymany
loci. If populations can be distinguished with multilocus genotypes,
then it is possible that phenotypes controlled by multilocus geno-
types could differ markedly between populations. Should we
expect to see larger differences between human populations for
traits influenced by many loci than for traits influenced by a single
locus?

Here, we extend Edwards’ modeldwhich has already proven to
be an effective framework for describing results about allelic-
variance partitioning and classificationdto study the expected
level of between-population difference for a selectively neutral
quantitative trait. Other researchers have studied this question in
other contexts (e.g. Berg & Coop, 2014; Chakraborty & Nei, 1982;
Felsenstein, 1973; Lande, 1976, 1992; Rogers & Harpending, 1983;
Whitlock, 1999), but by basing our analysis in Edwards’ model,
we explicitly connect questions about trait differences to questions
about multilocus ancestry inference. We show that for a random
quantitative trait under the extended Edwards model, two groups
are not unduly likely to differ on traits that are determined bymany
loci, even when the loci influencing the trait would provide a suf-
ficient basis for accurate classification. In particular, the expected
level of difference between the populations’mean trait values is, in
two senses made more precise below, approximately equal to the
magnitude of single-locus genetic difference between the pop-
ulations. Similarly, a typical multilocus trait contributes approxi-
mately as much information for classification as does a single
genetic locus.

2. The Edwards model

Risch, Burchard, Ziv, and Tang (2002, box 1), Edwards (2003),
and Tal (2012) have examined related classification models
involving accumulations of information across loci; here, we
consider the simplest of these models, that of Edwards (2003). We
first describe key features of the model, and we then introduce a
quantitative trait.

Suppose we have two haploid populations of equal size, labeled
A and B. At one genetic locus, the probability that an individual
from population A has an allelewe label “1” is p, with p˛(0,1/2), and
the probability of allele “0” is q ¼ 1 � p. In population B, the allele
frequencies are switched: The probability of “1” is q and the
probability of “0” is p. Table 1 shows the allele frequencies by
population.
Table 1
The frequencies of the “0” and “1” alleles in each population, with p þ q ¼ 1.

Population Allele

“0” “1”

A q p
B p q
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We can represent the genotype of an individual at the locus as a
randomvariable L that takes values of 0 and 1, andwe can represent
population membership of an individual as a random variable M
that takes values A and B. Within each population, the allelic vari-
ance at the locusdthat is, the variance of Ldis
Var(LjM¼ A)¼ Var(LjM¼ B)¼ pq. This result follows from the status
of LjM as a Bernoulli random variable with probability either p or q.

When not conditioning on population membership, the geno-
type at the locus is still a Bernoulli random variable, but now,
because populations A and B are equal in size, the probability of
observing a “1” is 1/2:

PðL ¼ 1Þ ¼ PðM ¼ AÞPðL ¼ 1jM ¼ AÞ
þ PðM ¼ BÞPðL ¼ 1jM ¼ BÞ

¼ 1
2
pþ 1

2
q ¼ 1

2
½pþ ð1� pÞ� ¼ 1

2
:

The total unconditional variance of L is therefore Var(L) ¼ P(L ¼ 0)
P(L ¼ 1) ¼ 1/4.

The proportion of the total allelic variance that is “within pop-
ulations”dthat is, the proportion of the total variance that remains
after conditioning on an individual’s population membershipdis
the conditional variance of L given M divided by the total variance
of L:

VarðLjMÞ=VarðLÞ ¼ pq=ð1=4Þ ¼ 4pq:

Because the total allelic variance is the sum of within- and
between-population components, the proportion of the total vari-
ance in allelic types that is “between populations,” or FST, is

FST ¼ ð1=4� pqÞ=ð1=4Þ ¼ 1� 4pq: (1)

Mimicking estimates for the between-region and between-
population proportion of genetic diversity from Lewontin (1972)
and subsequent studies, if we assume p < q, then we might take
p between 0.3 and 0.4dan interval that produces within-
population variance proportions from 0.84 to 0.96das approxi-
mately reflecting differences between human groups at a typical
locus.

Suppose we want to classify individuals into populations using
the genotype at the locus. That is, we wish to predict population
membership M after observing an individual’s allele. If p < q, then
the decision rule with the greatest prediction accuracy is to assign
individuals with a “0” allele to population A and individuals with
allele “1” to population B (Rosenberg, Li, Ward, & Pritchard, 2003).
That is, we assign an individual to the population in which its allele
is most common. Misclassification occurs for individuals from
population A with a “1” allele and individuals from population B
with a “0” allele. The total misclassification probability is

PðL ¼ 1jM ¼ AÞPðM ¼ AÞ þ PðL ¼ 0jM ¼ BÞPðM ¼ BÞ

¼ 1
2
pþ 1

2
p ¼ p:

Thus, if we use a single locus for classification, then the misclassi-
fication rate is p.

Suppose now that instead of being limited to one locus, we use k
loci to classify. We represent the genotypes of a random individual
at the k loci as random variables L1,.,Lk, denoting the total number
of “1” alleles at the loci by the random variable S ¼ Pk

i¼1Li. As-
sume that for all loci, allele frequencies in each population are the
same as at the single locus described above, and that conditional on
populationmembership, alleles at separate loci are independent. In
other words, conditional on population membership, the sum S of
lications of the apportionment of human genetic diversity for the
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“1” alleles is the sum of k independent Bernoulli trialsda binomial
random variable. For population A, (SjM ¼ A) w Binomial(k,p), and
in population B, (SjM ¼ B) w Binomial(k,q). Because q > p and
q¼ 1� p, we set a rule that if S< k/2, then the individual is assigned
to population A, and if S > k/2, then the individual is assigned to
population B. If S ¼ k/2, then the individual is assigned to popula-
tion A or B randomly with probability 1/2 for each population. We
represent the event that an individual is misclassified on the basis
of S with the random variable WS. If the individual is misclassified,
then WS ¼ 1, and WS ¼ 0 otherwise.

Following our classification rule, for odd k, the probability that
an individual from population B is misclassified into population A is
the probability that S < k/2:

PðWS ¼ 1jM ¼ BÞ ¼ PðS < k=2jM ¼ BÞ ¼
Xðk�1Þ=2

i¼0

�
k
i

�
qipk�i:

(2)

For even k, we modify the expression slightly to accommodate the
possibility that S ¼ k/2, in which case misclassification occurs with
probability 1/2:

PðWS ¼ 1jM ¼ BÞ ¼ 1
2

�
k

k=2

�
pk=2qk=2 þ

Xk=2�1

i¼0

�
k
i

�
qipk�i:

(3)

Because we have assumed that p ¼ 1 � q, the misclassification
probability is the same irrespective of the population from which
the individual is drawn, sowe can drop the condition on population
membership. Moreover, we show in Appendix A that Eq. (2) eval-
uated at k¼ 2hþ 1, where h is a non-negative integer, is equal to Eq.
(3) evaluated at k ¼ 2h þ 2. Applying this identity yields an
expression for P(WS ¼ 1) for both odd and even k:

PðWS ¼ 1Þ ¼
XPðk�1Þ=2R

i¼0

�
2Qk=2S� 1

i

�
qip2Qk=2S�1�i: (4)

Fig. 1 shows the decline in misclassification rates for several values
of p, illustrating that the misclassification probability decreases as
the number of loci used for classification grows.
Fig. 1. Under the Edwards model, the misclassification rate approaches zero as the
number of loci increases, as long as the two source populations differ in their allele
frequencies. Misclassification rates are computed from Eq. (4). A similar figure appears
in Edwards (2003).
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To better understand why the misclassification rate falls as the
number of loci increases, we can approximate the distribution of S
in each population. By the central limit theorem, as k increases, the
distribution of the binomial random variable S in each population
approaches a normal distribution. Using the properties of binomial
random variables, the expected sum is E(SjM ¼ A) ¼ kp for an in-
dividual from population A and E(SjM ¼ B) ¼ kq for an individual
from population B. The variance of the sum in each group is
Var(SjM) ¼ kpq, and the standard deviation is

ffiffiffiffiffiffiffiffi
kpq

p
.

Under the normal approximation, discarding the (1/2)P(S ¼ k/2)
term, which is negligible for large k, the probability of mis-
classifying an individual from population A into population B is the
probability that S > k/2. For individuals from population A, the
difference between k/2 and the expected value of S in units of the
standard deviation of S is

k=2� kpffiffiffiffiffiffiffiffi
kpq

p ¼
ffiffiffi
k

p q� p
2
ffiffiffiffiffiffi
pq

p :

Eq. (4) is then approximated by

PðWS ¼ 1Þz1� F

� ffiffiffi
k

p q� p
2
ffiffiffiffiffiffi
pq

p
�
; (5)

where F is the cumulative distribution function for the standard
normal distribution. F increases to 1 monotonically as its argument
approaches infinity. In fact, the argument need not be too large for
F to take values close to 1. F(c) is the probability that a normal
random variable is more than c standard deviations above its
expectation. Normal random variables are unlikely to be more than
3 standard deviations above their expectation,F(3)z 1�10�3, and
they are less likely still to fall more than 6 standard deviations
above their expectation, F(6)z 1�10�9. In our case, the argument
of F grows with

ffiffiffi
k

p
dfor example, with p ¼ 0.35, setting k ¼ 90

gives a misclassification rate P(WS ¼ 1)z 10�3, and setting k ¼ 360
gives P(WS ¼ 1) z 10�9. As the number of loci k grows large, the
misclassification rate approaches 0.

The Edwards model demonstrates that as long as there is a
nonzero difference in populations’ allele frequencies and there are
enough conditionally independent loci on which to base the clas-
sification, it is possible to classify individuals into populations with
arbitrarily high accuracy.
3. Adding a quantitative trait

Next, consider a quantitative trait that is completely determined
by the alleles at k loci that have the properties described above. The
trait is not influenced by variation in the environment, by genee
environment interaction, by geneegene interaction, or by epige-
netic effects. In quantitative genetics terms, its narrow-sense her-
itability is 1. We assume that each of the k loci contributes equally
to the trait. Specifically, at each locus, we label one allele “þ” and
the other “�”, where we have not yet specified whether the “þ”

allele is allele “0” or allele “1.” Because each individual’s value for
the traitdwhich we model as the random variable Tdis deter-
mined entirely by the equal additive effects of the k loci, T is equal
to the number of “þ” alleles that the individual carries. That is,

T ¼
Xk
i¼1

Vi; (6)

where Vi ¼ 1 if the individual carries a “þ” allele at the ith locus and
Vi ¼ 0 otherwise. In other words, whereas we counted the number
of “1” alleles to build the random variable Sdwhich was useful for
lications of the apportionment of human genetic diversity for the
Philosophy of Biological and Biomedical Sciences (2015), http://



Fig. 2. A schematic of one realization of our quantitative trait model with 10 loci. For a
given trait, loci are labeled according to whether the “1” or the “0” allele is the “þ”

allele. These labels are the Xi, and their sum is Z. The Xi are independent Bernoulli
random variables with probability 1/2, so Z is a binomial random variable. For every
individual, we draw alleles at each locus according to the allele frequencies in the
individual’s populationdthese are the Li, and their sum is S. The Li are independent
Bernoulli random variables with probability p in population A and q in population B, so
S is also binomial in each population. If Xi ¼ Li, then the individual has a “þ” allele at
the ith locus (Vi ¼ 1). The number of “þ” alleles for an individual is the trait value, T.
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classifying individuals into populationsdwe now count “þ” alleles
to construct T, which gives the value of a quantitative trait.

Each of our k loci has two alleles, and each allele now has two
labels. One label carries information about population member-
ship: as described in Section 2, the allele that is more common in
population A is labeled “0”, and the allele that is more common in
population B is labeled “1”. The other label tells us about a
traitdthe allele that leads to larger values of the trait is labeled “þ”,
and the allele that leads to smaller values of the trait is labeled “�”.
We assume that whether an allele is labeled “1” (or “0”) is inde-
pendent of whether it is labeled “þ” (or “�”). Thus, the allele that is
more common in population A is as likely to be associated with
larger values of the trait as it is to be associated with smaller values.
This choice amounts to an assumption that the trait has been
selectively neutral during the divergence of populations A and B,
that the allele frequencies in the two populations have reached
their current status without any influence of the effect of the loci on
the trait. We can express the point with the random variable Xi,
which equals 0 if the “0” allele is the “þ” allele at the ith locus and 1
if the “1” allele is the “þ” allele at the ith locus. For each of the k loci,
P(Xi ¼ 0) ¼ P(Xi ¼ 1) ¼ 1/2, independently of the other loci. We
denote the sum of the Xi as Z,

Z ¼
Xk
i¼1

Xi: (7)

Because each Xi is a Bernoulli random variable with success prob-
ability 1/2 and is independent of the other Xi, Z is binomially
distributed with k trials and success probability 1/2.

The Xi and the individual’s values for the Li determine the in-
dividual’s values for the Vi, and thus for T. That is, if we know the
individual’s set of “0” and “1” alleles and we knowwhich alleles are
the “þ” alleles, then we can calculate the individual’s value for the
trait. In particular,

Vi ¼ Li þ ð1� 2LiÞð1� XiÞ: (8)

Thus, if Li ¼ Xi, then Vi ¼ 1, and if LisXi, then Vi ¼ 0. Because T is the
sum of the Vi (Eq. (6)), we can rewrite T ¼ Pk

i¼1Li þ
ð1� 2LiÞ ð1� XiÞ. The relationships between L, X, and V appear in
Table 2. Fig. 2 shows a schematic of one realization of our model.
4. Properties of the quantitative trait conditional on the
labeling of the alleles

We can use this quantitative trait model to study the distribu-
tion of group differences for traits. In particular, we can ask how the
distribution depends on k. If a trait is highly polygenic, are the
Table 2
The relationships between the random variables L, X, and V.

Situation L X V

Allele is more common in population A and produces smaller T 0 1 0
Allele is more common in population A and produces larger T 0 0 1
Allele is more common in population B and produces smaller T 1 0 0
Allele is more common in population B and produces larger T 1 1 1

Note. L indicates an allele, either 0 or 1. X represents the randomized labeling of the
alleles, indicating whether having L ¼ 1 contributes to larger (X ¼ 1) or smaller
(X ¼ 0) values of the trait. V indicates whether the individual’s allele contributes to
larger (V ¼ 1) or smaller (V ¼ 0) values of the trait. Any one of these variables can be
constructed from the other twodif the other two variables have the same value,
then the third variable equals 1; otherwise it equals 0.
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populations more likely to differ considerably on the trait than if
the trait is determined by a single locus?

Our model contains two randomizations. The first randomiza-
tion, whichwe call “labeling,” determines which allele at each locus
contributes to larger values of the trait. As mentioned above,
independently at each locus, either the “0” or the “1” allele is
randomly labeled “þ”. Labeling happens once per trait.

In the second randomization, we generate individuals from each
population by randomly choosing alleles at each locus according to
the allele frequencies in the individual’s population. For example,
an individual from population A is generated by drawing “1” alleles
with probability p and “0” alleles with probability q, independently
at each locus.

We first study properties of the trait conditional on label-
ingdthat is, we study the second randomization conditional on the
outcome of the first randomization. More specifically, we examine
the distribution, expectation, and variance of the trait value T of an
individual, and the misclassification probability of an individual on
the basis of T, all conditional on the labels of the alleles being
known. These computations tell us how the groups differ on a
specific trait with known allelic labels. Later, in Section 5, to learn
about how the group differences vary across traits, we study the
ways in which these expressions vary across different labelings.

4.1. Distribution of T in each population given the labeling of the
alleles

We start by considering the distribution of the trait value T in
population A given the labeling. That is, we seek
P(T ¼ tjM ¼ A,{X1,.,Xk} ¼ {x1,.,xk}), where T is the sum of the Vi

(Eq. (6)). Applying Eq. (8) and conditioning on Xi gives either
Vi ¼ 1� Li if Xi ¼ 0 or Vi ¼ Li if Xi ¼ 1. Because the Li are independent
and identically distributed in each population, the order of the xi
does not affect the computation. Thus, we can forgo conditioning
on the Xi and simply condition on their sum, Z (Eq. (7)). For ease of
representation, if Z ¼ z, then we order the xi so that the first z en-
tries are equal to 1 and the remaining k � z entries are equal to 0.

Given that Z ¼ z, we can rewrite TjM,Z as

T jM ¼ A; Z ¼ zð Þ ¼
Xz
i¼1

LijM ¼ A; Z ¼ zð Þ

þ
Xk

i¼ zþ1

1� LijM ¼ A; Z ¼ zð Þ½ �:

(9)

We denote the two sums on the right, with the subscript indicating
the population (A or B) and the value of Xi for the corresponding
values of Li being summed (1 or 0), by
lications of the apportionment of human genetic diversity for the
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TA1 ¼
Xz

ðLijM ¼ A; Z ¼ zÞ (10)

i¼1

TA0 ¼
Xk

i¼ zþ1

½1� ðLijM ¼ A; Z ¼ zÞ�: (11)

In population A, the first z of the Vi are independent Bernoulli
random variables with parameter p. Thus, TA1 w Binomial(z,p).
Similarly, TA0 w Binomial(k � z,q).

Viewing T as the sum of two binomial distributions leads to
distributions, expectations, and variances of T within each popu-
lation. Conditional on Z ¼ z and membership in population A, the
probability that an individual has T ¼ t is

PðT ¼ tjM ¼ A; Z ¼ zÞ ¼
Xt
l¼0

�
z
l

�
plqz�l

�
k� z
t � l

�
pk�z�tþlqt�l:

(12)

This expression sums the probabilities of the ways that t “þ” alleles
can be drawn from the z loci for which the “1” allele is the “þ” allele
and the k � z loci for which the “0” allele is the “þ” allele. A useful
alternative statement of Eq. (12) is

PðT ¼ tjM ¼ A; Z ¼ zÞ ¼ pk�zqz
Xt
l¼0

�
z
l

��
k� z
t � l

��
p
q

�2l�t

:

(13)

Similarly, transposing the roles of p and q, in population B,

PðT ¼ tjM ¼ B; Z ¼ zÞ ¼ pzqk�z
Xt
l¼0

�
z
l

��
k� z
t � l

��
q
p

�2l�t

:

(14)

Before considering the expectation and variance of T in each
population, we need three more facts about the distribution of T in
populations A and B (Eqs. (15)e(17)). Analogously to Eqs. (9)e(11),
in population B, T can be viewed as the sum TB1 þ TB0, where
TB1 w Binomial(z,q) and TB0 w Binomial(k � z,p). Thus, TB1 has the
same distribution as z � TA1, and TB0 has the same distribution as
k � z � TA0. Then TB0 þ TB1 has the same distribution as
k � (TA0 þ TA1), meaning that

PðT ¼ tjM ¼ B; Z ¼ zÞ ¼ PðT ¼ k� tjM ¼ A; Z ¼ zÞ: (15)

If Z ¼ k/2, then TA0 w Binomial(k/2,p) and TA1 w Binomial(k/2,q).
Similarly, TB0 w Binomial(k/2,q) and TB1 w Binomial(k/2,p).Thus, in
both populations, T is the sum of two independent binomial
random variables with k/2 trials, one with probability p and one
with probability q. The distribution of T is therefore the same in the
two populations if Z ¼ k/2:

PðT ¼ tjM ¼ A; Z ¼ k=2Þ ¼ PðT ¼ tjM ¼ B; Z ¼ k=2Þ: (16)

In combination, Eqs. (15) and (16) guarantee that if z ¼ k/2, then
the conditional probability mass function in each population is
symmetric around k/2. That is,

PðT ¼ tjM ¼ A; Z ¼ k=2Þ ¼ PðT ¼ k� tjM ¼ A; Z ¼ k=2Þ
PðT ¼ tjM ¼ B; Z ¼ k=2Þ ¼ PðT ¼ k� tjM ¼ B; Z ¼ k=2Þ:

(17)
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The symmetries in Eqs. (15)e(17) result from our assumption that
q ¼ 1 � p, and they assist in our analysis of misclassification rates
obtained when using T for classification.
4.2. Expectation and variance of T in each population given the
labeling of the alleles

The expectation of T in population A conditional on Z is the sum
of the expectations of TA1 and TA0 (Eqs. (10) and (11)), which follow
from their status as binomial random variables:

EðTjM ¼ A; Z ¼ zÞ ¼ EðTA1Þ þ EðTA0Þ ¼ zpþ ðk� zÞq
¼ kqþ ðp� qÞz: (18)

In population B, the expectation of T is

EðTjM ¼ B; Z ¼ zÞ ¼ kpþ ðq� pÞz: (19)

Because TA1 and TA0 are independent,

VarðT jM ¼ A; Z ¼ zÞ ¼ VarðTA1Þ þ VarðTA0Þ ¼ zpqþ ðk� zÞpq
¼ kpq:

Similarly, Var(TjM ¼ B,Z ¼ z) ¼ kpq. Noticing that z does not appear
in the expression, we can remove the condition on Z. The variance
s2w of T in either population is

s2w ¼ VarðT jMÞ ¼ kpq: (20)

One convenient summary of the extent to which the two pop-
ulations differ on the trait is the standardized group difference, DT.
This quantity is the difference between the trait means in the two
populations divided by the within-population standard deviation.
Conditional on Z ¼ z,

ðDT jZ ¼ zÞ ¼ EðT jM ¼ A; Z ¼ zÞ � EðT jM ¼ B; Z ¼ zÞ
sw

¼ ðq� pÞðk� 2zÞffiffiffiffiffiffiffiffi
kpq

p : (21)

DT is an instance of Cohen’s d (Cohen, 1988), a measurement of
effect size and a special case of the Mahalanobis distance
(Mahalanobis, 1936). Its absolute value is the number of within-
population standard deviations separating the population means.
For fixed k and z, the value of DT decreases as p increases from 0 to
1/2, so that DT is larger for populations with a greater allele fre-
quency difference q � p.
4.3. The total expectation and variance of T given the labeling of the
alleles

The expectation of T, removing the condition on population
membership, is

EðTjZ ¼ zÞ ¼ EM½EðT jM; Z ¼ zÞ�;

where the subscriptM indicates that the expectation is with respect
to randomness in population membership. Each individual has a
probability of 1/2 of being from either population. Thus,

EðTjZ ¼ zÞ ¼ EðT jM ¼ A; Z ¼ zÞ
2

þ EðT jM ¼ B; Z ¼ zÞ
2

:

Using Eqs. (18) and (19) and remembering that p þ q ¼ 1 gives
lications of the apportionment of human genetic diversity for the
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EðT jZ ¼ zÞ ¼ kqþ ðp� qÞzþ kpþ ðq� pÞz
2

¼ k
2
: (22)
This expression does not depend on z, so E(T) ¼ k/2 for all Z.
By the law of total variance, the variance in T can be decomposed

into within- and between-population components:

VarðT jZ ¼ zÞ ¼ EM½VarðT jM; Z ¼ zÞ� þ VarM½EðT jM; Z ¼ zÞ�:
(23)

We already have the first term: Var(TjM, Z ¼ z) ¼ kpq (Eq. (20)), and
because the conditional variance is constant across populations,
EM[Var(TjM, Z ¼ z)] ¼ kpq.

The second term in Eq. (23) is the “between-population” vari-
ance of T. Note that

EðTjM; Z ¼ zÞ ¼ EðT jM ¼ A; Z ¼ zÞ
þ ½EðT jM ¼ B; Z ¼ zÞ
� EðT jM ¼ A; Z ¼ zÞ�IM¼B;

where IM¼B ¼ 1 if an individual is in population B and IM¼B ¼ 0
otherwise. Conditional on Z, the only random variable in this expres-
sion is IM¼B. IM¼BwBernoulli(1/2), so Var(IM¼B) ¼ 1/4. Using Eqs. (18)
and (19), the between-population variance of T, which we term s2b , is

s2b ¼ VarM½EðT jM; Z ¼ zÞ�
¼ ½EðT jM ¼ B; Z ¼ zÞ � EðTjM ¼ A; Z ¼ zÞ�2

.
4

¼ ðk� 2zÞ2ð1� 4pqÞ=4; (24)

and the total variance of T conditional on the labeling of the alleles
is then

VarðT jZ ¼ zÞ ¼ kpqþ ðk� 2zÞ2ð1� 4pqÞ=4: (25)

In quantitative genetics, QST is a conceptual analogue of FST for a
quantitative trait. For haploids, it is the proportion of heritable
variance in a quantitative trait attributable to genetic differences
between populations (Whitlock, 2008). In our case, all the variance
of T is heritable, so conditional on Z, we define QST as

ðQST jZ ¼ zÞ ¼ s2b
s2w þ s2b

¼
½ðk� 2zÞðq� pÞ�2

.
4

kpqþ ½ðk� 2zÞðq� pÞ�2
.
4
: (26)
4.4. Probability of misclassification using T given the labeling of the
alleles

We represent the event that an individual is misclassified on
the basis of its trait value T with the random variable WT, which
equals 1 if the individual is misclassified and 0 otherwise. The
probability of misclassifying an individual on the basis of T is thus
P(WT ¼ 1).

We set a classification rule for the trait value T analogous to the
rule used for the genotypic statistic S in Section 2. In particular, we
classify each individual into the population towhose trait mean the
individual’s trait value T is closest. Thus, conditional on Z ¼ z, we
classify the individual into population A if

jT � EðTjM ¼ A; Z ¼ zÞj < jT � EðT jM ¼ B; Z ¼ zÞj; (27)

and into population B if

jT � EðTjM ¼ A; Z ¼ zÞj > jT � EðT jM ¼ B; Z ¼ zÞj: (28)
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We randomly classify the individual into either population A or
population B, with probability 1/2 for each population, if

jT � EðT jM ¼ A; Z ¼ zÞj ¼ jT � EðT jM ¼ B; Z ¼ zÞj: (29)

We use the properties of the conditional expectation of T to
translate this rule into a statement about the distribution of T. By Eq.
(22), the twopopulationmeans of Tare symmetric around k/2. Thus,
we can translate Eqs. (27)e(29) into statements about the rela-
tionship of T to k/2. In particular, becausewe assume that p< q, Eqs.
(18) and (19) show that if z < k/2, then T> k/2 satisfies Eq. (27), and
weclassify the individual intopopulationA; T< k/2 satisfies Eq. (28),
andwe classify the individual into population B; and T¼ k/2 satisfies
Eq. (29), and we randomly classify into either population with
probability 1/2. Thus, for z< k/2, the probability ofmisclassifying an
individual from population A into population B is

P WT ¼ 1jM ¼ A; Z ¼ zð Þ ¼ P T < k=2jM ¼ A; Z ¼ zð Þ

þ 1
2
P T ¼ k=2jM ¼ A; Z ¼ zð Þ:

(30)

Using the distribution of T in population A (Eq. (13)), we have

PðWT ¼ 1jM ¼ A; Z ¼ zÞ

¼ 1
2
gþ pk�zqz

XQk=2�1S

t¼0

Xt
l¼0

�
z
l

��
k� z
t � l

��
p
q

�2l�t

; (31)

where g ¼ P(T ¼ k/2jZ ¼ z) is 0 if k is odd and

pk�zqz
Pk=2

l¼0

�
z
l

��
k� z
k=2� l

��
p
q

�2l�k=2

if k is even.

Retaining the assumption that z < k/2, the probability of mis-
classifying an individual from population B into population A is

PðWT ¼ 1jM ¼ B; Z ¼ zÞ ¼ PðT > k=2jM ¼ B; Z ¼ zÞ

þ 1
2
PðT ¼ k=2jM ¼ B; Z ¼ zÞ:

(32)

Because the probability mass function of T in population B is the
reflection across k/2 of the probability mass function of T in pop-
ulation A (Eq. (15)), the right sides of Eqs. (30) and (32) are equal.
Thus, we can use Eq. (31) to calculate the probability of mis-
classifying an individual from population B on the basis of its trait
value when z < k/2.

For z > k/2, applying similar reasoning, the misclassification
probability in either population is given by switching the roles of z
and k � z in Eq. (31). If z ¼ k/2, then Eq. (31) continues to provide
the correct probability of misclassification. Eq. (29) is satisfied for
all T if z ¼ k/2, so the misclassification probability is

PðWT ¼ 1jM ¼ A;Z ¼ k=2Þ ¼ PðWT ¼ 1jM ¼ B;Z ¼ k=2Þ ¼ 1=2:

To see that Eq. (31) is equal to 1/2 if z ¼ k/2, notice that by the
definition of a probability mass function,

PðT < k=2jM ¼ A; Z ¼ k=2Þ þ PðT ¼ k=2jM ¼ A; Z ¼ k=2Þ
þ PðT > k=2jM ¼ A; Z ¼ k=2Þ ¼ 1:

By Eq. (17), we can substitute P(T < k/2jM ¼ A,Z ¼ k/2)
¼ P(T > k/2jM ¼ A,Z ¼ k/2) to give 2P(T < k/2jM ¼ A,Z ¼ k/2)
þ P(T¼ k/2jM¼A,Z¼ k/2)¼1.Dividingboth sidesby 2 shows that Eq.
(30) is equal to 1/2 if z ¼ k/2. In turn, Eq. (31) is equal to Eq. (30).
lications of the apportionment of human genetic diversity for the
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We can modify Eq. (31) by replacing z with min{z,k � z} and
k� zwithmax{z,k� z} to get themisclassification probability given
Z ¼ z in either population, for any z:

PðWT ¼ 1jZ ¼ zÞ ¼ 1
2
gþ pmaxfz;k�zgqminfz;k�zg

XQk=2�1S

t¼0

Xt
l¼0

�
minfz; k� zg

l

�

�
�
maxfz; k� zg

t � l

��
p
q

�2l�t

:

(33)

As we did with P(WS ¼ 1) (Eq. (5)), we can
approximate P(WT ¼ 1jZ ¼ z) using a normal distribution. In pop-
ulation A, if k is large, then T is approximately normal with
expectation zp þ (k � z)q and variance kpq (Deheuvels, Puri, &
Ralescu, 1989, theorem 1.1). The probability of observing a value
of T leading to a misclassificationdthat is, of observing T < k/2 if
z < k/2 or T > k/2 if z > k/2dis approximated by

PðWT ¼ 1jZ ¼ zÞz1� F

"
jk� 2zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#
: (34)

Because the standard normal cumulative distribution function F

increases monotonically, the approximation of P(WT ¼ 1jZ ¼ z)
decreases monotonically as z approaches k/2 from either direction.
Holding p, q, and k constant, it achieves its upper bound in z if z¼ k/
2 and P(WT ¼ 1jZ ¼ z)z1/2. It achieves its lower bound when z ¼ 0
or z ¼ k and P(WT ¼ 1jZ ¼ z) is approximated by the same
expression that approximates P(WS ¼ 1) (Eq. (5)). The approximate
misclassification probability is lowest if the k loci all have the same
labeling, so that loci with opposite labelings do not “undo” each
other’s contributions to separating the populations. In Appendix B,
we prove analogous results for the exact misclassification
probability.
Fig. 3. The distribution of the standardized mean group difference DT for a trait
additively determined by k biallelic loci of equal effect. Here, p ¼ 0.35. As the number
of loci grows, the distribution approaches a normal distribution with expectation 0 and
variance (1 � 4pq)/(pq). The expectation and variance of DT do not change with k (Eqs.
(36) and (37)). The plot was produced using histograms of the probabilities in Eq. (39),
scaled to have total area 1.
5. Properties of T across different labelings of the alleles

Conditional on the labelings of the alleles {X1,X2,.,Xk}, we
have obtained the conditional expectation and variance of T given
group membership, the expectation and variance of T in the
absence of information on group membership, and the proba-
bility of misclassifying an individual on the basis of T. We defined
two summaries of group differencedDT, the standardized differ-
ence in group mean trait values (Eq. (21)), and QST, the
quantitative-trait analogue of FST (Eq. (26)). The overall expecta-
tion of T and the variance of T in each population were constant
across labelings of the alleles, and the conditional expectation of
T given population membership (Eqs. (18) and (19)), the variance
of T (Eq. (25)), DT (Eq. (21)), and QST (Eq. (26)) depended only on
Z ¼ Pk

i¼1Xi, the number of “1” alleles that are labeled as “þ”

alleles.
In this section, we consider how group differences in the trait

vary across labelings of the alleles. That is, we consider the
distributions of DT, QST, and the misclassification rate across
different traits T, which can have different values of Z. We
address three questions. First, how does DT change as k, the
number of loci that influence the trait, increases? Second, what
is the expected proportion of variance in the trait that is
accounted for by genetic differences between the pop-
ulationsdthat is, what is E(QST)? Third, does the trait become
increasingly useful for classification as the number of loci grows,
as the genotypic statistic S did?
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5.1. Question 1: How does the standardized difference DT change as
k, the number of loci that influence the trait, increases?

Eq. (21) gives the standardized difference DT conditional on
Z ¼ z. Removing the condition on Z gives the random variable

DT ¼ EðTjM ¼ AÞ � EðT jM ¼ BÞ
sw

¼ ðq� pÞðk� 2ZÞffiffiffiffiffiffiffiffi
kpq

p : (35)

DT is linear in Z. Recall that Z w Binomial(k,1/2), so E(Z) ¼ k/2 and
Var(Z) ¼ k/4. Thus,

EðDT Þ ¼ 0 (36)

VarðDT Þ ¼ 4ðq� pÞ2
kpq

VarðZÞ ¼ 1� 4pq
pq

: (37)

Because E(DT) ¼ 0,

E
�
D2
T

�
¼ VarðDT Þ ¼ 1� 4pq

pq
: (38)

The distribution of DT across traits comes from solving Eq. (35)
for Z, remembering that Z w Binomial(k,1/2):

PðDT ¼ dÞ ¼ 1
2k

0
B@

k

k
2
� d

ffiffiffiffiffiffiffiffi
kpq

p
2ðq� pÞ

1
CA: (39)

Because Z takes values in {0,1,2,.,k}, DT takes values in(
�kðq� pÞffiffiffiffiffiffiffiffi

kpq
p ;

ð�kþ 2Þðq� pÞffiffiffiffiffiffiffiffi
kpq

p ;
ð�kþ 4Þðq� pÞffiffiffiffiffiffiffiffi

kpq
p ;.;

kðq� pÞffiffiffiffiffiffiffiffi
kpq

p
)
:

The distribution of DT is symmetric around 0 because the distri-
bution of Z is symmetric around k/2. Applying the central limit
theorem, for large k, the distribution of DT is approximated by a
normal distribution with expectation 0 (Eq. (36)) and variance
(1 � 4pq)/(pq) (Eq. (37)). Fig. 3 shows the distribution of DT for
p ¼ 0.35 and several values of k. As seen in the figure, increasing k
increases the smoothness of the distribution of DT and makes larger
lications of the apportionment of human genetic diversity for the
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Fig. 4. The proportion of variance that is “between groups” in a typical neutral trait, in
allelic values at a single locus, and in the genotypic statistic S designed for classifica-
tion. Here, p ¼ 0.35. QST is the proportion of variance of a neutral trait attributable
to differences between groups (Eq. (40)). QST varies for different traits according
the labeling of alleles, and E(QST) is the expectation of QST across traits (Eq. (41)). FST
is the proportion of allelic variance at a single locus attributable to differences
between groups (Eq. (1)). We define SST analogously to QST and FST as the proportion of
variance in S, the sum of “1” alleles, attributable to differences between populations:
SST ¼ Var[EM(SjM)]/Var(S) ¼ k(1 � 4pq)/[4pq þ k(1 � 4pq)]. As the number of loci in-
creases, this quantity grows to 1. By contrast, E(QST) is approximately the same as FST,
regardless of how many loci influence the trait. Because QST is increasing in jZ � k/2j
(Eq. (40)), we can obtain quantiles of QST across traits by plugging the corresponding
quantiles of the distribution of jZ � k/2j (Eq. (B.15)) into Eq. (40). The gray region,
representing variability in QST, extends from the 5th to the 95th percentile.
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values of DT possible, but it does not change the location or spread
of the distribution.

What canwe conclude from these results? First, the expectation
of the difference in population trait means, E(DT), is zero (Eq. (36)).
This result reflects the symmetry of the distribution of Z, which, in
combination with Eqs. (18) and (19), implies that for a randomly
chosen trait, the larger mean value of T is as likely to come from
population A as it is to come from population B.

Second, the variance across traits of the standardized mean
difference between populations, Var(DT), does not depend on the
number of loci that determine the trait (Eq. (37)). If the variance of
DT grew with k, then the probability of observing large absolute
values of DT would also grow with k. Instead, by the central limit
theorem, as k increases, the probability of observing absolute
values of DT larger than a positive constant C approaches
PðjDT j > CÞz2F½�C

ffiffiffiffiffiffi
pq

p
=ðq� pÞ�. This value does not depend on k.

Finally, we note that EðD2
T Þ is equal to the squared standardized

difference in allelic values at a single locus, a quantity we define
analogously to DT (Eq. (21)) as

DL ¼ EðLjM ¼ AÞ � EðLjM ¼ BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðLjMÞp :

Recall that L is a Bernoulli random variable with probability p in
population A and probability q in population B. Plugging in
E(LjM ¼ A) ¼ p, E(LjM ¼ B) ¼ q, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðLjMÞp ¼ ffiffiffiffiffiffi

pq
p

gives

DL ¼ p� qffiffiffiffiffiffi
pq

p ;

and squaring gives

D2
L ¼ 1� 4pq

pq
¼ E

�
D2
T

�
;

where EðD2
T Þ comes from Eq. (38). Thus, the average squared

standardized difference in the populationmeans for the trait, EðD2
T Þ,

is the same as the squared standardized genetic difference between
the populations at a single genetic locus, D2

L , regardless of how
many loci determine the trait. One answer to question 1, then, is
that the expected absolute size of the standardized difference in the
two populations’ trait means does not grow as the number of loci
influencing the trait increases.
5.2. Question 2: What is the expected proportion of variance in the
trait that is accounted for by genetic differences between the
populations?

In Eq. (26), we defined QST conditional on Z ¼ z, where QST is, for
haploids, the proportion of heritable variance in the trait attribut-
able to genetic differences between the populations. Removing the
condition on Z in Eq. (26) gives the random variable

QST ¼ s2b
s2w þ s2b

¼ ðk� 2ZÞ2ð1� 4pqÞ=4
kpqþ ðk� 2ZÞ2ð1� 4pqÞ=4

: (40)

Because PðZ ¼ zÞ ¼
�
k
z

��
2k, the expectation across traits of QST

is

EðQSTÞ ¼ 1
2k
Xk
z¼0

ðk� 2zÞ2ð1� 4pqÞ=4
kpqþ ðk� 2zÞ2ð1� 4pqÞ=4

�
k
z

�
: (41)

Fig. 4 shows E(QST) for p¼ 0.35 and k ranging from 1 to 100. As seen
in the figure, the expected value of QST is nearly constant in k.
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To obtain more insight into the behavior of QST across different
traits, we approximate E(QST) by replacing (k � 2Z)2(1 � 4pq)/4 in
Eq. (40) with its expectation. This replacement is justified as a first-
order Taylor approximation. If we define a random variable
Y ¼ (k � 2Z)2(1 � 4pq)/4, then by Eq. (40),

QST ¼ Y
kpqþ Y

¼ gðYÞ:

Defining mY ¼ E(Y), a first-order Taylor series expansion then gives

QST ¼ gðYÞzgðmY Þ þ g0ðmY ÞðY � mY Þ;

and applying the expectation operator gives

EðQST Þ ¼ E½gðYÞ�zgðmYÞ þ g0ðmY ÞEðY � mY Þ ¼ gðmY Þ:

By Eq. (35), ðk� 2ZÞ2ð1� 4pqÞ=4 ¼ kpqD2
T=4. By Eq. (38),

E D2
T

� 	 ¼ 1� 4pqð Þ=ðpqÞ. Therefore,

EðQST Þz
kð1� 4pqÞ=4

kð1� 4pqÞ=4þ kpq
¼ 1� 4pq: (42)

Because QST is a concave function of Y, it follows from Jensen’s
inequalitydwhich holds that for a concave function g and a random
variable X, E[g(X)] � g[E(X)] dthat E(QST) � 1 � 4pq. Thus, the
approximation in Eq. (42) is an upper bound on E(QST). In the
Edwards model, the proportion of variance in allelic types attrib-
utable to differences between the populations, or FST, is also 1�4pq
(Eq. (1)), so we have

EðQST Þ � FST : (43)

These results support the idea that for a neutral trait, QSTzFST,
regardless of howmany neutral loci influence the trait. The answer
lications of the apportionment of human genetic diversity for the
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to question 2, then, is that we expect the proportion of the
variance of a neutral trait attributable to between-population dif-
ferences to be about the same as the proportion of the allelic
variance at a single locus that is attributable to between-population
differences.
Fig. 5. Expected misclassification rates obtained when using T, the individual’s value
for a neutral trait (Eq. (45)). These values are shown with misclassification rates ob-
tained when using L, the individual’s genotype at a single locus (p), and S, the multi-
locus sum of the individual’s “1” alleles (Eq. (2)). Here, p ¼ 0.35. When one uses S to
classify, the misclassification rate declines as the number of loci increases. When the
neutral traitdconstructed from the same alleles as S, but with different labelingsdis
used instead, the expected misclassification rate stays approximately the same as
when a single genetic locus is used, regardless of how many loci influence the trait.
Traits vary in classification accuracy depending on the labeling of alleles, and the gray
region indicates this variability. Because the misclassification rate using T decreases
monotonically with jZ � k/2j (Appendix B, Theorem 1), we can obtain quantiles of the
distribution of the misclassification rate across traits by plugging values of z corre-
sponding to quantiles of jZ � k/2j (Eq. (B.15)) into Eq. (33). The gray region extends
from the 5th to the 95th percentile.
5.3. Question 3: Does the trait become increasingly useful for
classification as the number of loci grows?

We saw that using genotypic data, it is possible to pool infor-
mation across genetic loci to classify accurately. Can the informa-
tion about ancestry contained in a large collection of loci be
extracted from a neutral trait they influence? To answer this
question, we consider the expected misclassification rate across
traits influenced by k loci.

The expected misclassification rate across traits is

E½PðWT ¼ 1Þ� ¼ 1
2k
Xk
z¼0

PðWT ¼ 1jZ ¼ zÞ
�
k
z

�
: (44)

Plugging in the expression for P(WT ¼ 1jZ ¼ z) from Eq. (33) gives

E½PðWT ¼ 1Þ� ¼ 1
2k
Xk
z¼0

�
k

z

�241
2
gþ pmaxfz;k�zgqminfz;k�zg

XQk=2�1S

t¼0

Xt
l¼0

�
minfz; k� zg

l

�

�
�
maxfz; k� zg

t � l

��
p
q

�2l�t
3
5;

(45)

where g ¼ P(T ¼ k/2jZ ¼ z). Fig. 5 shows the expected misclassifi-
cation rate across traits when p ¼ 0.35, with the misclassification
rate obtained using S, the sum of the individual’s “1” alleles (Eq.
(4)), for comparison. In the figure, the expected misclassification
rate obtained using T, the value of the neutral trait, does not sys-
tematically decrease as k increases.

In Section 2, considering the genotypic statistic S, we showed
that the normal approximation of the misclassification rate
P(WS ¼ 1) (Eq. (5)) approaches zero as k increases. We now show
that in contrast, the normal approximation to the expected
misclassification rate across traits E[P(WT ¼ 1)] is at least as large as
the corresponding approximate misclassification rate from a single
locus, regardless of the number of loci k that affect the trait.

For large k, the misclassification probability on the basis of the
trait obeys

1� PðWT ¼ 1ÞzF

"
jk� 2Zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#
;

where F is the standard normal distribution function (Eq. (34),
removing the condition on Z). Taking the expectation across traits
of both sides gives

1� E½PðWT ¼ 1Þ�zE

 
F

"
jk� 2Zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#!

:

On the right side, the argument to F is nonnegative. F(x) is concave
for x > 0 because for x > 0, the standard normal density F0(x) is
strictly decreasing in x, implying that F00(x) < 0. Applying Jensen’s
inequality gives
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1� E½PðWT ¼ 1Þ�zE

 
F

"
jk� 2Zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#!

� F

"
Eðjk� 2ZjÞðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#
: (46)

E(jk � 2Zj) ¼ 2E(jk/2 � Zj), twice the mean absolute deviation of Z.
For all random variables, by Jensen’s inequality, the mean absolute
deviation is no larger than the standard deviation. The standard
deviation of Z is

ffiffiffi
k

p
=2. Replacing E(jk � 2Zj) with 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞp ¼

ffiffiffi
k

p

therefore does not decrease the value on the right side of Eq. (46),
and

1� E½PðWT ¼ 1Þ�zE

 
F

"
jk� 2Zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#!

� F

�
q� p
2
ffiffiffiffiffiffi
pq

p
�
:

The lower bound on the approximate expected misclassification
rate is then

E½PðWT ¼ 1Þ�z1� E

 
F

"
jk� 2Zjðq� pÞ

2
ffiffiffiffiffiffiffiffi
kpq

p
#!

� 1� F

�
q� p
2
ffiffiffiffiffiffi
pq

p
�
:

(47)

The approximation of the expected trait-based misclassification
rate is no smaller than the normal approximation of the genetic
misclassification rate with one locus (Eq. (5)). Thus, the answer to
question 3 is that unlike the probability of misclassification ob-
tained when using genotypes, the expected misclassification rate
for a neutral trait does not decrease as k increases.
lications of the apportionment of human genetic diversity for the
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6. Discussion

Population-genetic studies have found that even if differences
between populations are small at each locus, accurate classification
of individuals into source populations is possible when many loci
are considered. Our results extend an important model for the
demonstration of this result by examining the distribution of
population differences in quantitative traits. Specifically, we
examined the situation in which the k loci of the Edwards model
additively determine the value of a neutral trait. We found that
such traits differ between populations to about the same degree as
do individual genetic loci, in that the expected proportion of vari-
ance in the trait attributable to genetic differences between pop-
ulations (Eq. (41)) is approximately the same as, and no larger than,
the single-locus proportion of allelic variance attributable to
between-population differences (Eqs. (1), (42) and (43)). Unlike
multilocus genotypes, multilocus neutral traits do not become
more useful for classification as the number of underlying loci in-
creases (Eq. (47)). For accurate classification, many traits are
required. These results (Table 3) emphasize that for neutral,
genetically controlled traits, phenotypic-diversity partitioning
typically reflects single-locus genetic-diversity partitioning.

Why are the results for a selectively neutral quantitative trait so
different from the results for multilocus genetic classification? The
power of multilocus classification comes from the aggregation of
information across locidan individual from population A is more
likely to have a “1” allele not just at one locus but at all of them.
Small differences in allele frequency at each locus accumulate to
separate the populations clearly. But when we assume that these
differences determine a trait that has not been under selection, we
impede the accumulation of information across loci. Suppose we
have a single locus at which the allele that is more common in
population A contributes to larger values of the trait. The influence
of this locus on the trait gives us a hint about population mem-
bership; that hint, however, is likely to be masked by the influence
of another locus at which the allele more common in population A
reduces trait values.

Although we have used a simple haploid model, our results are
similar to conclusions from other models with different assump-
tions. The result that the expected proportion of variance in a trait
attributable to between-group differences is approximately the
proportion of allelic variance attributable to between-group dif-
ferences (Eqs. (1) and (42)) is related to previous work in popula-
tion and quantitative genetics arguing that in several contexts, both
haploid and diploid, QST for selectively neutral traits is on average
equal to FST (e.g. Berg & Coop, 2014; Felsenstein, 1973, 1986; Lande,
1992; Lynch & Spitze, 1994; Rogers & Harpending, 1983; Spitze,
1993; Whitlock, 1999). We use this close analogy between our
analysis and previous work to discuss how relaxation of our
model’s assumptions might affect our results.

In our model, the genetic architecture of the trait is additive,
with no interactions between genes and no dominance. In the
Table 3
Three questions about selectively neutral, polygenic phenotypes and their answers unde

Question

1: How does the standardized difference in population means for the trait (DT)
change as k, the number of loci influencing the trait, increases?

2: What is the expected proportion of variance in the trait that is accounted for
by genetic differences between the populations, E(QST)?

3: Does the trait become increasingly useful for classification as the number
of loci grows?
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presence of dominance and epistasisdthat is, geneegene inter-
actiondQST tends to be somewhat smaller than FST (Whitlock,
2008). Thus, modifying our model by adding dominance and
epistasis would not likely affect our main claim that the partition of
neutral phenotypic diversity mirrors the single-locus partition of
genetic diversity.

To keep our model simple, we considered haploids rather than
diploids. For diploids, the analysis would proceed similarly, but
because diploids have two alleles at each locus, comparable infor-
mation for distinguishing populations is achieved in a diploid
model with half as many loci as in a haploid model. A slightly
modified expression for QST in diploids takes this difference into
account (Leinonen, McCairns, O’Hara, & Merilä, 2013; Whitlock,
2008).

Another assumption is that the trait is entirely genetically
determined. In our model, the environment either does not affect
the trait, or individuals in a population live in identical environ-
ments, at least in relation to aspects of the environment that could
affect the trait. If the trait is influenced by environmental variation,
then environmental differences between populations can either
cause or erase large group differences in the trait, regardless of
genetic differentiation or selection history (Pujol, Wilson, Ross, &
Pannell, 2008).

Finally, we assumed that the trait has not been under selection.
The behavior of QST under divergent selection is a major source of
interest in QST. When a trait has been under divergent selection in
groups under considerationdthat is, when the selective pressure
on the trait has varied in strength or direction across groupsdQST

tends to exceed FST, and when the trait has been under uniform
selection, QST tends to be smaller than FST (Whitlock, 2008).

Considering the phenomena that affect QST and FST can help us
make sense of past work on human phenotypic variation. For
example, in Relethford’s (2002) study of worldwide variation in
craniometric traits and skin color, the proportion of variance in
craniometric traits attributable to between-population differences
was roughly equal to the proportion of allelic variance at a single
locus attributable to between-population differences. This finding
accords with the results for our extension of the Edwards model,
and it is consistent with a hypothesis that selection on many cra-
niometric traits has been weak or absent.

In the same groups studied by Relethford (2002), the proportion
of variation in skin color attributable to between-population dif-
ferences was much larger. When confronted by trait differences
between groups that are much larger than genetic differences at
typical loci, we have recourse to several possible explanations
(Leinonen et al., 2013; Whitlock, 2008). First, the trait differences
might stem from an unlikely realization of drift. Second, the trait
differences might be due to environmental differences between the
groups. Third, the trait differences might be due to differences in
selection operating on the groups’ ancestors. Fourth, our mea-
surements may be incorrect in a way that magnifies group differ-
ences. These possibilities are not mutually exclusive, nor are they
r the extended Edwards model.

Answer References

As k grows, the typical absolute size of DT does
not change, but the distribution of DT approaches
normality.

Eq. (38), Fig. 3.

It is approximately equal to, and no larger than,
the proportion of allelic variance at a single locus
attributable to genetic differences, FST.

Eqs. (42) and (43), Fig. 4.

No. Eq. (46), Fig. 5.
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exhaustive. Concluding definitively in favor of any of these expla-
nations requires more investigation. For skin pigmentation, genetic
evidence supports natural selection as part of the explanation of
group differences (Berg & Coop, 2014).

The finding that genomic analyses enable ancestry inference has
led many authors to consider the relevance of both single-locus
genetic-diversity partitioning and multilocus classification for
philosophical ideas of “race” (e.g. Andreasen, 2004; Donovan, in
press; Gannett, 2010; Glasgow, 2003; Hardimon, 2012; Hochman,
2013; Kaplan & Winther, 2014; Kitcher, 2007; Kopec, in press;
Ludwig, in press; Sesardic, 2010; Spencer, 2014; Spencer, in
press). Our results contribute to these discussions by clarifying
the phenotypic consequences of single-locus genetic diversity
partitioning and multilocus classification results. Both sets of re-
sults are valid, and they are mutually compatible, but they have
different implications and uses (Barbujani, Ghirotto, & Tassi, 2013;
Neel, 1981; Rosenberg, 2011; Winther, 2014). Multilocus methods
allow us to detect genome-wide patterns of variation and to
investigate the ancestry of individual people. But it is single-locus
allelic-variance partitioning that informs our expectations about
selectively neutral phenotypic diversity. In particular, population
genetics and quantitative genetics lead us to expect that differences
between human populations in neutral phenotypes will mirror
differences between human populations at single neutral loci.
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Appendix A.

In this appendix, we prove that Eq. (2) evaluated at k ¼ 2h þ 1
with h a non-negative integer is equal to Eq. (3) evaluated at
k ¼ 2h þ 2. That is, we show that for odd k�1 and q ¼ 1 � p, with
0 < p,q < 1,

Xðk�1Þ=2

i¼0

�
k
i

�
piqk�i ¼ 1

2

0
@ kþ 1

kþ 1
2

1
Apðkþ1Þ=2qðkþ1Þ=2

þ
Xðk�1Þ=2

i¼0

�
kþ 1

i

�
piqkþ1�i: (A.1)

Because k is odd, we write k ¼ 2h þ 1, with h�0 an integer.
Because qs0, we let u¼ p/q, so q¼ 1/(uþ 1). The desired identity is
then equivalent to

ðuþ 1Þ
Xh
i¼0

�
2hþ 1

i

�
ui ¼ 1

2

�
2hþ 2
hþ 1

�
uhþ1 þ

Xh
i¼0

�
2hþ 2

i

�
ui:

Applying the binomial identity
�
2hþ 1

i

�
¼


1� i

2hþ2

��
2hþ 2

i

�
;

we obtain

Xh
i¼0



u
�
1� i

2hþ 2

�
� i
2hþ 2

��
2hþ 2

i

�
ui ¼ 1

2

�
2hþ 2
hþ 1

�
uhþ1:

Next, noting that i
2hþ2

�
2hþ 2

i

�
¼
�
2hþ 1
i� 1

�
; Eq. (A.1) is equiv-

alent to
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(A.2)

The sum telescopes: by Pascal’s rule, the
��

2hþ 2
i

�
�
�
2hþ 1
i� 1

��

uiþ1 term with index i is canceled by the � 2hþ 1
iþ 1ð Þ � 1

� �
uiþ1 term

with index i þ 1. Thus, the left-hand side of Eq. (A.2) evaluates to

uþ


� uþ

��
2hþ 2

h

�
�
�
2hþ 1
h� 1

��
uhþ1

�

¼
��

2hþ 2
h

�
�
�
2hþ 1
h� 1

��
uhþ1:

Applying Pascal’s rule twice more,
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, the left-hand side of Eq. (A.2) reduces to

1
2

�
2hþ 2
hþ 1

�
uhþ1, completing the proof of Eq. (A.2) and hence of Eq.

(A.1).
Appendix B.

In this appendix, we show that the conditional probability of
misclassifying an individual on the basis of its trait value,
P(WT ¼ 1jZ ¼ z), increases as z gets closer to k/2. We introduce and
prove three claims used to obtain the result. We then give upper
and lower bounds on P(WT ¼ 1jZ ¼ z) in z, and we outline a method
for obtaining quantiles of P(WT ¼ 1).

Theorem 1. Define P(WT ¼ 1jZ ¼ z) as in Eq. (33) and fix k�1 an
integer. For integers z1 and z2 in {0,1,.k}, if jz1 � k/2j > jz2 � k/2j,
then P(WT ¼ 1jZ ¼ z1) < P(WT ¼ 1jZ ¼ z2).
B.1. Claim 1: For even k, P(WT ¼ 1jM ¼ A,Z ¼ k/2) ¼ 1/2

This claim has been shown in the main text, but we restate the
proof for completeness.

Proof of Claim 1. For even k, the claim follows from the classifi-
cation rule in the main text (Eqs. (27)e(29)). By Eqs. (18) and (19), if
Z ¼ k/2, then Eq. (29) holds for all T, and we classify each individual
randomly into either population, each with probability 1/2.
B.2. Claim 2: For odd k, P(WT ¼ 1jM ¼ A,Z ¼ (k � 1)/2) < 1/2

We start by introducing two lemmas.

Lemma 1. (Samuels, 1965, eq. (15)). Let Y be a sum of indepen-
dent Bernoulli random variables with probabilities that are
not necessarily identical, and let p1 be the smallest
probability associated with any of these Bernoulli trials.
If y < E(Y) þ p1, then P(Y ¼ y � 1) < P(Y ¼ y).

Lemma 2. Let R be a random variable taking values in {0,1,.,2h}
for an integer h�1. Assume that for each r in {0,1,.,2h},
lications of the apportionment of human genetic diversity for the
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PðR ¼ rÞ ¼ PðR ¼ 2h� rÞ; (B.1)

and that

0 < PðR ¼ 0Þ < PðR ¼ 1Þ < . < PðR ¼ hÞ: (B.2)

Let Bq be an independent Bernoulli random variable with param-
eter q > 1/2, and let p ¼ 1 � q.

Then for l˛{0,1,.,h},

P
�
Rþ Bq ¼ l

	
< P

�
Rþ Bq ¼ 2hþ 1� l

	
: (B.3)

Proof of Lemma 2. For l˛{1,.,h}, probabilities for the sum R þ Bq
satisfy

P
�
Rþ Bq ¼ l

	 ¼ PðR ¼ lÞpþ PðR ¼ l� 1Þq (B.4)

P
�
Rþ Bq ¼ 2hþ 1� l

	
¼ PðR ¼ 2hþ 1� lÞpþ PðR ¼ 2h� lÞq: (B.5)

Note that Eqs. (B.4) and (B.5) also hold for l ¼ 0 because
P(R ¼ �1) ¼ P(R ¼ 2h þ 1) ¼ 0. Because of the symmetry of the
distribution of R (Eq. (B.1)), Eq. (B.5) is equivalent to

P
�
Rþ Bq ¼ 2hþ 1� l

	 ¼ PðR ¼ l� 1Þpþ PðR ¼ lÞq:

Because q > p, Eq. (B.3) is then equivalent to

PðR ¼ l� 1Þ < PðR ¼ lÞ:

This last inequality is true for l˛{1,.,h} by the assumption in Eq.
(B.2) and, for l ¼ 0, by the fact that P(R ¼ �1) ¼ 0.

Proof of Claim 2. In population A, for h a positive integer, the
random variable (TjM ¼ A,Z ¼ h,k ¼ 2h), including the extra con-
dition on k to indicate the number of loci contributing to the trait,
satisfies the hypotheses of Lemma 2. The symmetry in Eq. (B.1)
comes from Eq. (17), and the monotonically increasing probabili-
ties in Eq. (B.2) come from applying Lemma 1 to the independent
Bernoulli trials that sum to produce the random variable (Eqs. (9)e
(11)) and noting that P(T ¼ 0jM ¼ A,Z ¼ h,k ¼ 2h) ¼ phqh > 0.

We can view Bq as an additional locus with X ¼ 0, meaning that
the probability in population A that the locus increases the trait
value T is q (Table 1). The sum (TjM ¼ A,Z ¼ h,k ¼ 2h) þ Bq is
therefore equal in distribution to (TjM ¼ A,Z ¼ h,k ¼ 2h þ 1).
Applying Lemma 2 with (TjM ¼ A,Z ¼ h,k ¼ 2h þ 1) as R þ Bq gives,
for l˛{0,1,.,(k � 1)/2},

PðT ¼ ljM ¼ A; Z ¼ ðk� 1Þ=2Þ
< PðT ¼ k� ljM ¼ A; Z ¼ ðk� 1Þ=2Þ: (B.6)

Eq. (B.6) guarantees that

Xðk�1Þ=2

l¼0

PðT ¼ ljM ¼ A; Z ¼ ðk� 1Þ=2Þ

<
Xk

l¼ðkþ1Þ=2
PðT ¼ ljM ¼ A; Z ¼ ðk� 1Þ=2Þ;

meaning that
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PðT � ðk� 1Þ=2jM ¼ A; Z ¼ ðk� 1Þ=2Þ
< PðT � ðkþ 1Þ=2jM ¼ A; Z ¼ ðk� 1Þ=2Þ: (B.7)

Applying Eq. (30) and noting P(T�(k� 1)/2)þ P(T�(kþ 1)/2)¼ 1,
for odd k�3,

PðWT ¼ 1jM ¼ A; Z ¼ ðk� 1Þ=2Þ < 1=2: (B.8)

Because Lemma 2 assumes h� 1, our argument applies to odd k� 3.
If k ¼ 1, then Eq. (B.8) holds because q > p.
B.3. Claim 3: If z�k/2 � 1, then
P(WT ¼ 1jM ¼ A,Z ¼ z) < P(WT ¼ 1jM ¼ A,Z ¼ z þ 1)

To prove this claim, we use a lemma.

Lemma 3. Consider a random variable R ¼ R1 þ R2 that is the sum
of two independent binomial random variables, R1 with an integer
z�k/2 � 1 trials and probability p and R2 with k � z � 1 trials and
probability q. That is, R1wBinomial(z,p), and independently,
R2wBinomial(k � z � 1,q). Define two independent random vari-
ables, BqwBernoulli(q) and BpwBernoulli(p) with q > p. Then for
0�j�k/2,

P
�
Rþ Bq ¼ j

	
< P

�
Rþ Bp ¼ j

	
: (B.9)

Proof of Lemma 3. For 1 � j � k/2, the random variables R þ Bq
and R þ Bp satisfy

P
�
Rþ Bq ¼ j

	 ¼ PðR ¼ jÞpþ PðR ¼ j� 1Þq
P
�
Rþ Bp ¼ j

	 ¼ PðR ¼ jÞqþ PðR ¼ j� 1Þp:

For j ¼ 0, these equations follow from the fact that P(R ¼ �1) ¼ 0.
Eq. (B.9) therefore holds if

PðR ¼ jÞpþ PðR ¼ j� 1Þq < PðR ¼ jÞqþ PðR ¼ j� 1Þp:

Because q > p, the inequality is satisfied if

PðR ¼ j� 1Þ < PðR ¼ jÞ: (B.10)

R is the sum of k � 1 independent Bernoulli random variables.
Lemma 1 guarantees that Eq. (B.10) is satisfied if j < E(R) þ p.
Because z � k/2 � 1 and q > p,

k=2 ¼ ðpþ qÞk=2 < ðzþ 1Þpþ ðk� z� 1Þq ¼ EðRÞ þ p:

Thus, Eq. (B.10) is satisfied for j � k/2, which shows that Eq. (B.9)
holds for j � k/2.

Proof of Claim 3. The random variable (TjM ¼ A,Z ¼ z), which,
with k loci, is the sum of z � k/2 � 1 independent Bernoulli trials
with probability p and k � z independent Bernoulli trials with
probability q, has the properties required for R þ Bq in Lemma 3.
Similarly, (TjM ¼ A,Z ¼ z þ 1) has the properties of R þ Bp. Applying
Lemma 3, for z � k/2 � 1 and t�k/2,

PðT ¼ tjM ¼ A; Z ¼ zÞ < PðT ¼ tjM ¼ A; Z ¼ zþ 1Þ:

It follows that

PðT < k=2jM ¼ A; Z ¼ zÞ þ PðT ¼ k=2jM ¼ A; Z ¼ zÞ=2
< PðT < k=2jM ¼ A; Z ¼ zþ 1Þ
þ PðT ¼ k=2jM ¼ A; Z ¼ zþ 1Þ=2:
Applying Eq. (30) to this last inequality gives, for z � k/2 � 1,
lications of the apportionment of human genetic diversity for the
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PðWT ¼ 1jM ¼ A; Z ¼ zÞ < PðWT ¼ 1jM ¼ A; Z ¼ zþ 1Þ;
(B.11)

demonstrating the desired result.
B.4. Completing the proof of Theorem 1: both populations and
all z

Claims 1e3 prove Theorem 1 for population A and z1,z2�k/2.
If Z ¼ k/2, then P(WT ¼ 1jM ¼ A,Z ¼ z) ¼ 1/2 (Claim 1); for odd k,
if Z ¼ (k � 1)/2, then P(WT ¼ 1jM ¼ A,Z ¼ z) < 1/2 (Claim 2); and
as Z decreases from k/2 � 1, P(WT ¼ 1jM ¼ A,Z ¼ z) decreases
(Claim 3). We have thus proven that for z1,z2˛{0,1,.,k/2}, if
z1 < z2, then

PðWT ¼ 1jM ¼ A; Z ¼ z1Þ < PðWT ¼ 1jM ¼ A; Z ¼ z2Þ:
(B.12)

It remains to examine z > k/2 and to remove the condition on M.
By Eq. (33), the misclassification probability on the basis of T

does not depend on population membership, so we can drop the
condition on M ¼ A in Eq. (B.12). That is, for z1,z2˛{0,1,.,k/2}, if
z1 < z2, we now have

PðWT ¼ 1jZ ¼ z1Þ < PðWT ¼ 1jZ ¼ z2Þ: (B.13)

Further, Eq. (33) shows that P(WT ¼ 1jZ ¼ z) ¼ P(WT ¼ 1jZ ¼ k � z),
so that Eq. (B.13) holds for z1,z2˛{0,1,.,k} with min{z1,k� z1}<min
{z2,k � z2}. But min{z1,k � z1} < min{z2,k � z2} if and only if
jz1 � k/2j > jz2 � k/2j, completing the proof of Theorem 1.

B.5. Applying Theorem 1

By Theorem 1, the upper bound in z of P(WT ¼ 1jZ ¼ z), achieved
when z ¼ k/2, is (Section B.1)

PðWT ¼ 1jZ ¼ zÞ � 1=2:

The lower bound in z of P(WT ¼ 1jZ ¼ z), achieved when z ¼ 0 or
z ¼ k, is

PðWT ¼ 1jZ ¼ zÞ � PðWS ¼ 1Þ;

taking P(WS ¼ 1) from Eq. (4). The lower bound is calculated using
z ¼ 0 or z ¼ k in Eq. (33).

Because P(WT¼ 1jZ¼ z) decreases with jz� k/2j, quantiles of the
distribution of P(WT ¼ 1) are obtained by identifying the corre-
sponding quantiles of jZ � k/2j. We define J ¼ jZ � k/2j. If k is even,
then J takes values in {0,1,.,k/2}; if k is odd, then J takes values in
{1/2,3/2,.,k/2}.

Because Z w Binomial(k,1/2),

PðJ ¼ jÞ ¼

8>>>>><
>>>>>:

1

2k

 
k

k=2

!
; j ¼ 0

1

2k�1

 
k

k=2� j

!
; js0:

(B.14)

The cumulative distribution function of J is

FJðjÞ ¼
Xj
i¼0

PðJ ¼ iÞ:

The qth quantile of J is
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F�1
J ðqÞ ¼ min

n
j : FJðjÞ � q

o
: (B.15)

The two values of z corresponding to the qth quantile of J are k=2�
F�1
J ðqÞ and k=2þ F�1

J ðqÞ. Plugging either of these values into Eq.
(33) gives the qth quantile of P(WT ¼ 1).
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