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Abstract

Objectives: In genetic admixture processes, source groups for an admixed population

possess distinct patterns of genotype and phenotype at the onset of admixture. Par-

ticularly in the context of recent and ongoing admixture, such differences are some-

times taken to serve as markers of ancestry for individuals—that is, phenotypes

initially associated with the ancestral background in one source population are

assumed to continue to reflect ancestry in that population. Such phenotypes might

possess ongoing significance in social categorizations of individuals, owing in part to

perceived continuing correlations with ancestry. However, genotypes or phenotypes

initially associated with ancestry in one specific source population have been seen to

decouple from overall admixture levels, so that they no longer serve as proxies for

genetic ancestry. Here, we aim to develop an understanding of the joint dynamics of

admixture levels and phenotype distributions in an admixed population.

Methods: We devise a mechanistic model, consisting of an admixture model, a quan-

titative trait model, and a mating model. We analyze the behavior of the mechanistic

model in relation to the model parameters.

Results: We find that it is possible for the decoupling of genetic ancestry and pheno-

type to proceed quickly, and that it occurs faster if the phenotype is driven by fewer

loci. Positive assortative mating attenuates the process of dissociation relative to a

scenario in which mating is random with respect to genetic admixture and with

respect to phenotype.

Conclusions: The mechanistic framework suggests that in an admixed population, a

trait that initially differed between source populations might serve as a reliable proxy

for ancestry for only a short time, especially if the trait is determined by few loci. It

follows that a social categorization based on such a trait is increasingly uninformative

about genetic ancestry and about other traits that differed between source

populations at the onset of admixture.
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1 | INTRODUCTION

During intraspecific admixture processes, two or more long-separated

populations merge to form a new admixed population. Viewed from a

population-genetic standpoint, in an admixture process, distributions

of genetic and phenotypic variation in the source populations com-

bine to produce new distributions in the admixed group. The first gen-

erations after the onset of admixture generate transient dynamics
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whose features are distinctive in relation to populations that are not

admixed or for which admixture occurred only in the distant past

(Gravel, 2012; Verdu & Rosenberg, 2011).

We seek to examine an aspect of emerging admixed populations.

For admixed individuals, measurements of specific genotypes and

phenotypes that differ in frequency or distribution between source

populations can often provide reasonable estimates of individual

levels of genetic ancestry in the particular source populations

(Devillard et al., 2014; Parra et al., 1998; Shriver et al., 1997; Trigo

et al., 2014). For some human phenotypes, such measurements might

even be regarded by societies or admixed individuals themselves as

proxies for overall genetic ancestry (Algee-Hewitt, 2016; Parra

et al., 2004; Ruiz-Linares et al., 2014).

However, genotypes or phenotypes initially associated with

ancestry in one source population at the start of an admixture process

can decouple from overall admixture levels, so that they no longer

serve as tight proxies for ancestry (Beleza et al., 2013; Durso

et al., 2014; Leite et al., 2011; Magalh~aes da Silva et al., 2014; Parra

et al., 2003, 2004; Pimenta et al., 2006; Ruiz-Linares et al., 2014). In

human genetics, consider skin pigmentation and eye color, observable

traits for which the phenotypic distribution differs substantially

between sub-Saharan African and European populations. In the Cape

Verdean admixed population, descended from European and West

African sources, measurements of skin pigmentation and eye color are

correlated with sub-Saharan African genetic ancestry (Beleza

et al., 2013). At the same time, the correlations between phenotype

and ancestry are imperfect; many individuals with a high proportion of

sub-Saharan African genetic ancestry have skin pigmentation and eye

color traits in a range more typical of individuals with higher European

genetic ancestry, and vice versa. Similar patterns of incomplete corre-

lation with overall genetic ancestry hold for genotypes that underlie

these phenotypes (Beleza et al., 2013).

How does ancestry level decouple from genotype and phenotype

in an admixed population? In humans, Parra et al. (2003) proposed

one scenario for this decoupling, using an example of assortative mat-

ing by a phenotype correlated with ancestry in Brazil. They com-

mented that in Brazil, assortative mating depends in part on color, a

phenotypic measure based to a large extent on skin pigmentation. In

their proposed hypothesis, in a population descended from source

groups with substantially different skin pigmentation distributions

(say, sub-Saharan Africans and Europeans), similarity according to a

phenotype correlated with genetic ancestry (say, color) increases the

probability that a pair is a mating pair. Mating probabilities for pairs of

individuals are more closely related to the phenotype than to overall

sub-Saharan African or European genetic admixture levels per

se. Whereas in the early generations of such a process, the phenotype

would strongly reflect genetic ancestry, after a sufficient length of

time with assortative mating by the phenotype, phenotypic variation

would be maintained, but with similar genetic ancestry distributions

for individuals with substantially different phenotype (Figure 1). Only

at genes associated with the phenotype and their nearby linked geno-

mic regions would genetic ancestry and the phenotype be associated.

Could genetic ancestry in an admixed population become almost

entirely decoupled from the phenotypes that differ between its

source populations? This scenario would eliminate any connection

between visible phenotypic markers of genetic ancestry and the

genetic ancestry itself; the phenotype of an individual for a trait such

as skin pigmentation would reveal little information about the genetic

ancestry of molecular characters in the individual—other than for skin

pigmentation genes and their closest genomic neighbors—nor about

the total genomic ancestry of the individual.

To gain an understanding of the decoupling that can occur

between phenotype and admixture, we develop a mechanistic model

describing the joint dynamics of admixture levels and phenotype dis-

tributions in an admixed group. The approach includes a quantitative-

genetic model that relates a phenotype to underlying loci that affect

its trait value. We consider three forms of mating. First, individuals

might mate randomly, independently of the overall admixture level.

Second, individuals might assort by a phenotype that is initially corre-

lated with the admixture level, but that is not identical to it. Third,

individuals might assort by the admixture level itself. This latter case is

meant to approximate situations in which correlated ancestry has

been detected across mating pairs in admixed populations (Risch

et al., 2009; Zou et al., 2015), potentially reflecting assortative mating

by multidimensional phenotypes tightly correlated with admixture.

Under the model, we explore the relationship between admixture

level and phenotype over time, studying the effect of the mating

model and the genetic architecture of the phenotype.

2 | MODEL

2.1 | Population model

Our mechanistic admixture model closely follows the model of Verdu,

Goldberg, and Rosenberg (Goldberg et al., 2014; Goldberg &

Rosenberg, 2015; Verdu & Rosenberg, 2011), building on earlier

related models (Ewens & Spielman, 1995; Guo et al., 2005;

Long, 1991). We start with individuals in each of two isolated source

populations, S1 and S2. At the founding of an admixed population

(g = 0), a founding parental pool Hpar
0 is formed, containing fraction s1,0

from population S1 and s2,0 from population S2. That is, a random indi-

vidual in Hpar
0 originates from population S1 with probability s1,0 and

from S2 with probability s2,0. This choice requires s1,0 + s2,0 = 1 and

0≤ s1,0, s2,0≤1. The individuals in the founding parental pool mate

according to a mating model and produce generation g = 1 of admixed

offspring (H1).

In subsequent generations (g ≥ 1), in forming an admixed popula-

tion Hg + 1 at generation g + 1, three populations contribute to its

parental pool Hpar
g : the source populations (S1 and S2) and the admixed

population (Hg) of the previous generation, with fractional contribu-

tions s1,g, s2,g, and hg, respectively. Here, s1,g, s2,g, and hg represent

probabilities for a random individual in Hpar
g to originate from

populations S1, S2, and Hg, with constraints s1,g+ s2,g+ hg = 1 and
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0≤ s1,g, s2,g, hg≤1. Offspring from matings in the parental pool Hpar
g

define the admixed population Hg+1. A schematic appears in Figure 2.

The total admixture fraction represents the proportion of the

genome of an individual originating from a specific ancestral popula-

tion, S1 or S2. We denote an individual's admixture fraction from a

source population S1 at generation g by HA,g, with the A indicating

consideration of autosomal genetic loci. Given a pair of individuals

with admixture fractions H 1ð Þ
A,g and H 2ð Þ

A,g , the ancestry of their offspring

is deterministically set to the mean of the admixture fractions of the

parents: HA,g +1 = 1
2 H 1ð Þ

A,g +H
2ð Þ
A,g

h i
. The possible values for the admixture

fraction at generation g, representing possible values for the fraction

of genealogical ancestors g generations ago who were in the source

S1, are 0, 1/2g, 2/2g, …, (2g−1)/2g, 1.

2.2 | Quantitative trait model

To model a phenotype, we adopt the approach of Edge &

Rosenberg (2015a, 2015b). Each individual is diploid, and k biallelic

autosomal loci, each with the same effect size, additively determine

the value of a quantitative trait. At each trait locus, we denote the

allelic type more prevalent in S1 than in S2 as allelic type “1,” and the

F IGURE 1 A schematic of an admixture process with positive assortative mating by a phenotype initially correlated with admixture levels. In
generation 0, an admixture process begins with females from one population (source 1, left) and males from another (source 2, right). For a
quantitative phenotype, source population 1 begins with a high trait value of 6 and source population 2 has a low trait value of 0. Three loci
contribute additively to the genetic architecture of the phenotype; each allele derived from source population 1 contributes a value of 1 to the
phenotype. The phenotype is represented by the shading of a box. Individuals are depicted as pairs of chromosomes with the ancestral sources of

those chromosomes; short vertical lines along the chromosome indicate the three loci that contribute to the phenotype. After generation
1, positive assortative mating by phenotype proceeds in the admixed population. Lines connecting generations are displayed in four colors,
representing four mating pairs. Initially, in generation 2, a strong correlation exists between admixture and phenotype (r = 0.96). By generation 4,
however, owing to recombination events that stochastically dissociate the trait loci from the overall genetic admixture, the genetic admixture has
been decoupled from the phenotype, so that some of the individuals with the highest trait values have among the lowest admixture coefficients
for source population 1, and the correlation between phenotype and overall genetic admixture has dissipated (r = − 0.09)
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other allelic type as “0.” The choice is arbitrary if the allele frequency

is the same in the two populations. A diploid individual's genotype at

locus i, 1 ≤ i ≤ k, and allele j, j = 1 or 2, is represented by a random

indicator variable Lij : Lij = 1 if the allele has type “1” and Lij = 0 if it

has type “0.”
Let M be a random variable representing an individual's popula-

tion membership, S1 or S2, and define allele frequencies for allelic type

“1” at each locus given the membership: P(Lij = 1j M = S1) = pi and

P(Lij = 1j M = S2) = qi. Here, j can be either 1 or 2. By definition of alle-

lic type “1,” 0 ≤ qi ≤ pi ≤ 1.

An individual's trait value is determined by a sum of contributions

across loci. At each locus, we denote an allele that increases the trait

value by “+” and the other allele by “−.” Whether the “1” type or the

“0” type is the “+” allele at locus i is specified by a random variable Xi

(Edge & Rosenberg, 2015a, 2015b): Xi = 1 if allelic type “1” is the “+”
allele at locus i, and Xi = 0 if allelic type “0” is the “+” allele at locus i.

For a given set of values {X1, X2, � � �, Xk} for k quantitative trait

loci, the total trait value T for a diploid individual is equal to the total

number of “+” alleles carried by the individual, or

Tj X1,X2,���,Xkf g =
P

i:Xi =1f g
P2

j=1Lij
h i

+
P

i:Xi =0f g
P2

j=1 1−Lij
� �h i

. This quan-

tity takes values in {0, 1, …, 2k}. An example of the quantitative trait

model appears in Figure 3.

We consider an idealized case in which the number of “1” alleles

correlates perfectly with trait value: P(Xi = 1) = 1 and P(Xi = 0) = 0 for

all i = 1, 2, …, k, so that allelic type “1” is the “+” allele and type “0” is
the “−” allele for all trait loci. Because we define “1” to be the more

frequent allelic type in the source population S1, individuals from S1

are more likely than are those from S2 to have a large trait value. This

idealized scenario considers a case in which the phenotype differs sys-

tematically between populations 1 and 2, and is depicted in Figure 1.

The idealized case is instructive owing to its simplicity; a more com-

plex scenario is considered in the Supporting Information.

2.3 | Mating model

We consider three mating models: (a) random mating, in which the

probability that a pair consisting of a male and a female is a mating

pair does not depend on the phenotypes or ancestries of the individ-

uals; (b) assortative mating by admixture, in which this probability

depends on their ancestries; and (c) assortative mating by phenotype,

in which it depends on their trait values. For completeness, we include

F IGURE 2 A schematic diagram of the admixture process. At the
founding of the population (g = 0), two isolated source populations
produce the first generation of an admixed population (H1). In the
subsequent generations (g ≥ 1), populations from S1, S2, and Hg

provide a parental pool Hpar
g at generation g from which the admixed

population Hg+1 at generation g+1 is produced. Fractional
contributions from three populations in forming the parental pool are
s1,g, s2,g, and hg, respectively. Individuals in the parental pool mate
based on mating models described in Section 2.3

F IGURE 3 An example of the quantitative trait model. Here, a
diploid individual with k = 8 trait loci is shown. At each locus i, an
allele Lij contributes to the overall trait value if and only if Lij = Xi,
where Xi is a variable indicating which of two alleles, “0” or “1,”
increases the trait value. The total trait value of an individual equals
the number of alleles satisfying Lij = Xi across the k trait loci. In this
example, the individual has T = 6
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negative assortative mating in describing our model, but our simula-

tions focus on positive assortative mating.

In each generation g, the parental pool Hpar
g contains 2N individ-

uals, N female and N male. The admixture fraction from the source

population S1 and trait value of a female individual i are denoted by

H ið Þ,f
A,g and T ið Þ,f

g , respectively. Analogous quantities for a male j are H jð Þ,m
A,g

and T jð Þ,m
g .

We construct an N × N mating matrix M. Entry mij gives the prob-

ability that if a mating pair is selected at random, female i and male j

are chosen. N mating pairs are drawn with replacement, with pair (i, j)

given weight mij. An individual can be drawn multiple times, appearing

in more than one mating pair.

The full specification of the mij is described in Appendix A for the

three mating models, in terms of a parameter c. The value of c is 0 for

random mating; increasing jcj increases the strength of assortative

mating, with c > 0 corresponding to positive assortative mating and

c < 0 to negative assortative mating.

2.4 | Expectation and variance of the admixture
fraction

To interpret our simulations of admixture dynamics, we will use

results on the mean and variance of the admixture fraction in the

admixed population. Let HA,g be a random variable representing the

admixture fraction of an individual chosen at random in the admixed

population Hg at generation g ≥ 1. We denote by Hf,p
A,g ,H

m,p
A,g

� �
the

admixture fractions of the members of a mating pair chosen at ran-

dom from the parental pool Hpar
g in generation g≥0; the superscript p

denotes that the individual is from the parental pool.

The parental pool Hpar
g , from which admixed population Hg+ 1 is

formed, consists of populations S1, S2, and Hg, with fractional contri-

butions s1,g, s2,g, and hg, respectively (Section 2.1 and Figure 2). Each

population (S1, S2, Hg) has equally many males and females, each con-

stant at N. Each individual has the same expected number of offspring,

and no sex bias by the population of origin exists in parental pairings

(Section 2.3); Hf,p
A,g and Hm,p

A,g are identically distributed. The quantity

rHA ,g =Cor Hf,p
A,g ,H

m,p
A,g

h i
gives the correlation of admixture fractions in a

mating pair.

In Appendix B, we derive a relationship between the variance of

the admixture fraction and the correlation in admixture levels for

members of mating pairs. For a special case of a single admixture

event in which source populations S1 and S2 do not contribute to the

admixed population after its founding (s1,g = s2,g = 0 and hg = 1 for all

g ≥ 1), Appendix B shows that the expectation of the admixture frac-

tion stays constant in time (Equation (B5)), and that the variance

reduces to a simple formula (Equation (B6)):

Var HA,g +1½ �= 1
2

1+ rHA ,gð ÞVar HA,g½ �: ð1Þ

Under random mating in an infinite population with no ongoing

source contributions, with rHA ,g =0 for all g≥0, Equation (1) reduces

to Var[HA,g] = s1,0(1− s1,0)/2
g (Verdu & Rosenberg, 2011).

Equation (1) was also derived by Zaitlen et al. (2017), under different

assumptions (notably, mating correlation rHA ,g = r constant in g).

3 | SIMULATION

3.1 | Simulation procedure

Having specified the populations of interest, the properties of trait

values in the populations, and the mating probabilities for pairs of

individuals, we now describe how we simulate populations under the

model. At the first time step (g = 0), s1,0N and s2,0N males are ran-

domly generated without replacement from the source populations S1

and S2, respectively, with s1,0 + s2,0 = 1. The corresponding numbers

of females s1,0N and s2,0N are randomly generated without replace-

ment from S1 and S2, respectively, contributing to the founding paren-

tal pool Hpar
0 of 2N individuals, with N males and N females. All

individuals in S1 have admixture fraction 1, and all individuals in S2

have admixture fraction 0, by definition. For each individual in S1 and

S2, genotypes at each of k quantitative trait loci are then randomly

generated based on prespecified allele frequencies pi and qi.

We assume fixed differences between source populations at all trait

loci, so pi = 1 and qi = 0 for all k loci. Each individual in S1 has allele “1” at all
trait loci, and each individual in S2 instead has allele “0.” In subsequent gen-

erations, allele “1” can be traced back to S1, and allele “0” to S2 (Figure 2).

This choice for the pi and qi models a case in which trait-influencing alleles

are initially entirely predictive of ancestry and vice versa. An alternative

choice of the pi and qi appears in the Supporting Information.

As described in Appendix A, we compute an N × N mating matrix M.

Considering all N2 potential mating pairs, we randomly draw N mating

pairs with replacement from the parental pool, weighting mate choices by

mating probabilities in M. Each mating pair produces two offspring, one

male and one female, to maintain constant population size for the off-

spring generation: N males, N females. An offspring admixture fraction is

then assigned as the mean of its parental admixture fractions. Assuming

no linkage disequilibrium and no mutation, the offspring genotype at the

trait loci is then determined by independently selecting at each locus one

random allele from one parent and one from the other. The 2N offspring

individuals form the admixed population H1 at generation 1.

In subsequent generations g ≥ 1, we randomly select without

replacement s1,gN, s2,gN, and hgN males and s1,gN, s2,gN, and hgN

females from S1, S2, and Hg, respectively, forming a gth generation

parental pool Hpar
g of 2N individuals, consisting of N males and N

females. The procedure to generate the offspring population Hg+1

from Hpar
g is the same as the procedure for generating H1 from Hpar

0 .

Throughout the simulation, we keep the population size parame-

ter N constant at 1000 for computational efficiency. The admixed

population size (N) need not be identical to the source population

sizes. For each set of parameters, (k, p1, p2, …, pk, q1, q2, …, qk, X1, X2,

…, Xk, c, s1,0, s1,g, s2,g), we proceeded to G = 40 generations, with

100 independent trajectories for each parameter set. We then aver-

aged statistics of interest over the 100 trajectories.
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3.2 | Base case

We start with an idealized base case that is instructive for characteriz-

ing model behavior. We then consider increasingly complex cases to

explore the effects of the parameters.

First, we specify the parameters involving the population model

(Section 2.1). We assume an equal influx from each source population

at founding g = 0: s1,0 = 0.5, s2,0 = 1 − s1,0 = 0.5. We also assume no

additional contributions from the source populations in the subse-

quent generations, s1,g = s2,g = 0, and hg = 1 − s1,g − s2,g = 1 for

all g ≥ 1.

Next, we choose parameter values for the quantitative trait model

(Section 2.2). We consider k = 10 trait loci. Across the k loci, all “1”
alleles come from the source population S1 and all “0” alleles come

from S2: pi = 1 and qi = 0 for all i = 1, 2, …, k. For each locus i contribut-

ing to the quantitative trait, we define “1” to be the “+” allele and “0”
to be the “−” allele: Xi = 1 for all i = 1, 2, …, k.

For the mating model (Section 2.3), we set the assortative mating

strength to c = 0.5.

3.3 | Statistics measured

In each simulated admixed population, in each generation g, we com-

puted the correlation between admixture fraction and trait (Cor[HA,

T]), variance of the admixture fraction in the population (Var[HA]), and

variance of the trait value in the population (Var[T]). In the Results, we

discuss how these statistics of interest change as we modify the simu-

lation parameters.

4 | RESULTS

We first examine the base case to understand the general behavior of

the model. Next, we study the effects of the assortative mating

strength and the number of loci contributing to the quantitative trait.

We also examine two additional model features—choosing allele fre-

quencies in the source populations according to genetic drift from a

shared ancestral population, rather than assuming fixed differences

between source populations, and decoupling alleles that are more

common in a specific source population (“1” alleles) and trait-

increasing alleles (“+” alleles). These latter changes produce similar

results, dampening larger effects seen with the base case; we describe

them in the Supporting Information.

4.1 | Base case

4.1.1 | Correlation between ancestry and
phenotype (Cor[HA, T])

In the base case, each individual from S1 has admixture fraction

HA = 1 and trait value T = k, and each individual from S2 has HA = 0

and T = 0. Therefore, in the founding parental pool Hpar
0 , admixture

fraction and trait value are perfectly correlated: Cor[HA, T] = 1. Subse-

quently, however, the correlation starts to decouple, as illustrated in

Figure 1. With all parameters of the population model and quantita-

tive trait model fixed, the decay in the correlation Cor[HA, T] depends

on the mating model.

The correlation is compared under the three mating models using

base-case parameters in Figure 4e. Irrespective of the mating model,

the founding parental pool has a perfect correlation. Even if the popu-

lation starts with perfect correlation between admixture fractions and

trait values, however, then random mating rapidly decouples them

(red curve). The correlation decreases below 0.5 in 6 generations of

random mating (Cor[HA, T] = 0.490). After g = 20 generations, it is

0.137, and it is near zero at g = 40 (−0.003).

Compared to random mating, positive assortative mating slows

the decoupling of admixture fractions and trait values. Assortative

mating by phenotype (green curve in Figure 4e) maintains the correla-

tion longer than assortative mating by admixture fraction (blue curve

in Figure 4e). It takes 11 generations under assortative mating by phe-

notype for the correlation to drop below 0.5 (Cor[HA, T] = 0.490), and

10 generations under assortative mating by admixture (Cor[HA,

T] = 0.443). Across the 40 generations we simulated, Cor[HA, T] is

consistently higher under assortative mating by phenotype than under

assortative mating by admixture fraction. The correlation decreases to

0.227 at g = 20 and 0.043 at g = 40 under assortative mating by phe-

notype. The corresponding values under assortative mating by admix-

ture are 0.065 at g = 20 and 0.009 at g = 40, both considerably lower

than under assortative mating by phenotype.

In comparison with random mating, both assortative mating

models have higher probabilities for matings within source

populations, and thus, the proportion of individuals produced in the

admixed population at g = 1 that are genetically admixed is smaller

(blue and green lines in the marginal plots for HA in Figure S1A). Over

time, as displayed in Figure S1, random mating pulls individuals away

from the source populations, pushing the HA and T distributions

toward the mean values rapidly. Both assortative mating models main-

tain individuals with HA and T values near the source population

values for longer, and thus, they retain a higher correlation Cor[HA, T]

than random mating.

The difference in the correlation Cor[HA, T] between the two

assortative mating models arises from the difference between the var-

iance of admixture, Var[HA], and the variance of the trait value, Var[T].

The covariance Cov[HA, T] is similar under the two models. Given the

similar covariance,

Cor HA ,T½ �p
Cor HA ,T½ �g

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var HA½ �g
Var HA½ �p

×
Var T½ �g
Var T½ �p

s
,

where “g” and “p” indicate the property on which mating pairs assort:

genetic admixture or phenotype. As we will show, both assortative

mating models increase both variances compared with random

mating, particularly for the property on which mating assorts:

Var[HA]g > Var[HA]p and Var[T]p > Var[T]g. We will see that the
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increase in the variance of admixture due to assortative mating by admix-

ture fraction exceeds that in the variance of the trait value due to assor-

tative mating by trait:

Var HA½ �g
Var HA½ �p

>
Var T½ �p
Var T½ �g

:

This result leads to a higher correlation Cor[HA, T] under assorta-

tive mating by trait compared with that under assortative mating by

admixture fraction.

4.1.2 | Variance of admixture and phenotype
(Var[HA] and Var[T])

Each individual in S1 has admixture fraction 1, and each individual

in S2 has admixture 0. In the founding parental pool, Var[HA] =

0.250 for all three mating models. As discussed in Section 2.4,

the variance of the admixture fraction can be understood in rela-

tion to the correlation Cor Hf
A,g ,H

m
A,g

h i
of admixture fractions of

members of mating pairs. Figure S2 shows this correlation for the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 4 Correlation between admixture fraction and quantitative trait value (Cor[HA, T]) as a function of time. All parameter values in panel
(e) follow the base case; the number of quantitative trait loci k and the assortative mating strength c vary across panels. In each panel, for a given
(k, c) pair, for each mating scheme, the mean of 100 simulated trajectories is plotted. The red, blue, and green curves represent results from
random mating, assortative mating by admixture fraction, and assortative mating by phenotype, respectively. (a) k = 1, c = 0.1. (b) k = 1, c = 0.5. (c)
k = 1, c = 1.0. (D) k = 10, c = 0.1. (E) k = 10, c = 0.5. (f) k = 10, c = 1.0. (g) k = 100, c = 0.1. (h) k = 100, c = 0.5. (i) k = 100, c = 1.0
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simulations of Figure 4, and Figure S3 shows the analogous correla-

tion Cor Tf
g ,T

m
g

h i
of trait values.

Figure 5e then shows the variance of the admixture fraction

under the three mating models, for the same simulations from

Figure 4e with the base case parameters. The Var[HA] curves in

Figure 5e under the three mating models follow Equation (B6), using

the time-varying rHA ,g in Figure S2.

Among the three mating models, the variance of admixture

Var[HA] decreases fastest for random mating. After one generation,

Var[HA] falls in half (0.125), and it continues to decrease monotoni-

cally by half. After 40 generations, it is 2.118 × 10−13. The distribu-

tion of the admixture fraction concentrates around HA = 1
2 at each

generation. Because the offspring admixture fraction is the mean of

those of its parents, without additional influx from the source

populations after the founding event, random mating rapidly drives

the admixture fraction away from extreme values (0 or 1) toward the

mean value of the parental pool (12).

Under assortative mating by admixture, pairs with similar admix-

ture fractions have higher mating probabilities than under random

mating. The fraction of offspring that are admixed is smaller than

under random mating, and the admixture fraction distribution

remains close to the extreme values (0 or 1) for longer (Figure S1).

Hence, Var[HA] is larger under assortative mating by admixture frac-

tion (Figure 5e). Without influx from the source populations, Var[HA]

eventually decreases to zero, but the decrease is slower than for

random mating. Var[HA] = 0.184 after one generation of assortative

mating by admixture fraction, and Var[HA] = 1.118 × 10−8 after

40 generations. This result can also be seen in Equation (B6). From

generation g to g + 1, Var[HA]g decreases by a factor of 1 + rHA ,gð Þ=2.
With positive assortative mating by admixture (rHA ,g >0 ), Var[HA] in

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 5 Variance of admixture fraction (Var[HA]) as a function of time. The simulations shown are the same ones from Figure 4. (a) k = 1,
c = 0.1. (b) k = 1, c = 0.5. (c) k = 1, c = 1.0. (d) k = 10, c = 0.1. (e) k = 10, c = 0.5. (f) k = 10, c = 1.0. (g) k = 100, c = 0.1. (h) k = 100, c = 0.5. (i) k = 100,
c = 1.0. Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale
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the next generation is increased compared with the case of random

mating (rHA ,g =0).

Under assortative mating by phenotype, Var[HA] = 0.183 after

one generation of assortative mating by phenotype, and Var[HA] =

4.910 × 10−12 after 40 generations. For the first few generations

(g < 5), because Cor[HA, T] is high, the correlation between the admix-

ture fractions in mating pairs, and thus Var[HA], is similar under the

two assortative mating models, as shown in the comparison of the

green and blue curves in Figure S2 and Figure 5. However, because

the admixture fraction and phenotype decouple over time, mating

assortatively by phenotype results in lower rHA ,g than mating assorta-

tively by admixture fraction. In accord with Equation (B6), assortative

mating by phenotype produces faster decay in Var[HA] with its lower

rHA ,g at each generation than assortative mating by admixture fraction.

For the variance of the trait value Var[T], by definition of T, all

individuals in S1 and S2 have trait values 20 and 0, respectively.

Therefore, in the founding parental pool, Hpar
0 , noting that S1 and S2

each have 1000 individuals, Var[T] has the same constant value
2,000
1,999 �102 =100:050 irrespective of the mating model. Figure 6e dis-

plays Var[T], which decreases most rapidly under random mating,

falling by half (50.025) in one generation, and approaching a

steady–state value ≈4.957 after 13 generations. Opposite to

what was seen for Var[HA], however, assortative mating by trait

retains Var[T] higher for longer than assortative mating by admix-

ture fraction. Similar to the case with Var[HA] under assortative

mating by admixture fraction, assortative mating by trait keeps

the trait values near extremes for longer than the other two mat-

ing models.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 6 Variance of the phenotype (Var[T]) as a function of time. The simulations shown are the same ones from Figure 4. (a) k = 1, c = 0.1.
(b) k = 1, c = 0.5. (c) k = 1, c = 1.0. (d) k = 10, c = 0.1. (e) k = 10, c = 0.5. (f) k = 10, c = 1.0. (g) k = 100, c = 0.1. (h) k = 100, c = 0.5. (i) k = 100, c = 1.0.
Colors and symbols follow Figure 4. The y-axis is plotted on a logarithmic scale
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Having examined the behavior of Cor[HA, T], Var[HA], and Var[T]

in the base case, we now explore the effect on these quantities of the

assortative mating strength c and the number of trait loci k.

4.2 | Assortative mating strength (c)

4.2.1 | Cor[HA, T]

Each row of Figure 4 illustrates the influence of the assortative mating

strength c on Cor[HA, T] with a fixed number of trait loci k, and each

column depicts the effect of the number of loci k on Cor[HA, T] with

fixed assortative mating strength c. All parameters other than c and k

are held constant at the base case values.

With different assortative mating strengths and numbers of trait

loci, c = 0.1, 0.5, 1.0 and k = 1, 10, 100, the qualitative behavior of

Cor[HA, T] remains the same as in the base case. As before, we

observe decay in Cor[HA, T] under all three mating models, with ran-

dom mating decoupling ancestry and trait values the most rapidly.

Cor[HA, T] remains higher for longer under assortative mating by phe-

notype than under assortative mating by admixture fraction. The rate

of decay and the degree to which the patterns differ across the three

mating models depend on the assortative mating strength and the

number of loci.

If assortative mating is weak (c = 0.1 in Figure 4a,d,g), then

Cor[HA, T] under assortative mating by admixture and by phenotype

closely follow that under randommating. This pattern is seen irrespective

of the number of loci. Note that in the limit of c = 0, the assortative mat-

ing and random mating models are identical because the mating function

in Equation (A2) becomes a constant, the same for all three mating

models.

Comparing panels within rows of Figure 4, results from random

mating are identical, as c does not affect the random mating model.

Under both assortative mating models, however, Cor[HA, T] increases

with c. In an extreme case of complete assortment (c ! ∞), the corre-

lation would stay constant at 1: only identical individuals mate, so that

an initial correlation between admixture and phenotype persists

unchanged.

The difference among the three models increases with the assor-

tative mating strength given a fixed number of trait loci. The differ-

ence is the greatest if k = 1 and c = 1.0 (Figure 4c). Even after

40 generations, assortative mating by trait retains a high correlation at

0.788, whereas the corresponding values under random mating and

assortative mating by admixture are 0.006 and 0.010, respectively.

4.2.2 | Var[HA] and Var[T]

The plots of Var[HA] in Figure 5 and Var[T] in Figure 6 consider the

same simulations that appear for Cor[HA, T] in Figure 4. As is seen in

classical work (Crow & Felsenstein, 1968; Crow & Kimura, 1970;

Felsenstein, 1981), compared with random mating, assortative mating

increases the variance of the property on which assortment takes

place. Thus, the variance of the admixture fraction is increased to a

greater extent under mating by admixture fraction than under mating

by phenotype. Similarly, the variance of the phenotype is increased to

a greater extent under mating by phenotype than under mating by

admixture fraction. Both types of assortative mating increase both

Var[HA] and Var[T] compared with random mating.

The variance-increasing effect of assortative mating is visible

across panels within each row. For low assortative mating strength

(c = 0.1), panels a, d, and g in Figures 5 and 6 depict minimal differ-

ences in Var[HA] and Var[T] between mating models. As c increases,

for a given number of loci, Figures 5 and 6 display increased differ-

ences between random and assortative mating, with maximal separa-

tion at the largest c simulated, c = 1 (panels c, f, i). The random mating

model is unaffected by c, as seen with Cor[HA, T].

4.3 | Number of trait loci (k)

4.3.1 | Cor[HA, T]

A comparison of panels within columns of Figure 4 shows that under

random mating, with more loci associated with the phenotype, the

ancestry–phenotype correlation is higher and stays high for longer:

it takes longer for HA and T to become decoupled. Under random

mating, the correlation falls below 0.5 at g = 3 if k = 1, g = 6 if k = 10,

and g = 10 if k = 100, independent of the assortative mating

strength.

As the number of loci increases, results from the models with

assortative mating by phenotype and by admixture become similar. If

(c, k) = (1,100) (Figure 4i), then it takes 24 generations for Cor[HA, T]

values under the two models to differ by more than 0.1.

Corresponding times for (c, k) = (1, 1) (Figure 4c) and (c, k) = (1, 10)

(Figure 4f) are g = 6 and g = 15, respectively. Recall that the admixture

fraction represents the probability that a random allele at a random

autosomal genetic locus originates from the source population S1,

assuming infinitely many loci. In the k ! ∞ limit, with the whole

genome contributing to the trait, the assortative mating models by

admixture and by phenotype would behave very similarly.

4.3.2 | Var[HA] and Var[T]

Comparing panels within columns in Figure 5, for a given assortative

mating strength, Var[HA] under assortative mating by admixture fol-

lows the same curve irrespective of the number of loci. Because the

mating probability is independent of trait values if mating assortatively

by admixture, k has no effect.

As in the base case, both assortative mating models have higher

Var[HA] and Var[T] than random mating. Assortative mating by admix-

ture fraction has greater Var[HA] than assortative mating by trait at

each generation; for Var[T], assortative mating by trait has greater

values. As was seen with Cor[HA, T], for Var[HA] and Var[T], the differ-

ence between random mating and both assortative mating models
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increases with k, and the difference between the two assortative mat-

ing models diminishes as k increases.

5 | DISCUSSION

We have devised a mechanistic model of a quantitative phenotype in

an admixed population, studying it in relation to loci affecting its trait

value and to mate choice. The admixture level and the phenotype are

examined using a discrete-time recursion that describes evolution in

the admixed population. We have considered the correlation between

ancestry and phenotype in the admixed population under three mat-

ing models: random mating, assortative mating by admixture fraction,

and assortative mating by phenotype.

5.1 | Behavior of the model

Initially, ancestry and phenotype are coupled, as the source

populations differ in phenotype. Random mating then decouples the

correlation between ancestry and trait faster than is seen in both

assortative mating models (Figure 4), and assortative mating by phe-

notype maintains the correlation to a greater extent than does assor-

tative mating by admixture (Figure 4). Compared with random mating,

in a similar manner to classic assortative mating models (Crow &

Felsenstein, 1968; Crow & Kimura, 1970; Felsenstein, 1981), the

assortative mating increases the population variance of the property

on which the assortment is based (Figures 5 and 6). In fact, our

Equation (1) multiplies the variance of admixture in a model without

assortment (Verdu & Rosenberg, 2011) by a factor that increases with

positive assortative mating.

Increasing the strength of assortative mating magnifies the differ-

ence among models in the speed at which the correlation declines

(Figure 4). As the number of loci underlying the trait increases, the

assortative mating models have increasingly similar trajectories. Assor-

tative mating by admixture fraction affects all loci, whereas assorta-

tive mating by trait affects only trait loci and their genomic neighbors.

Hence, with more trait loci, assortative mating by trait increasingly

mimics assortative mating by admixture (Figure 4).

Differences between assortative and random mating are apparent

under the idealized setting in which distinct alleles are fixed in the

two source populations, and in which all alleles that are more frequent

in the source population S1 than S2 are the trait-increasing alleles

(Figure 4). In scenarios that relax these idealized assumptions, when

the source populations have allele frequency differences that do not

amount to fixed differences (Figures S4 and S5), generally similar qual-

itative patterns are observed.

5.2 | Applications and extensions

The focus of our simulations has been on understanding demographic

phenomena, but the model is relevant to efforts to investigate

determinants of disease traits in admixed human populations. For

example, in admixture-mapping studies and studies of health dispar-

ities involving admixed populations, correlations of phenotypes and

admixture levels are often computed (Gravlee et al., 2009; Non

et al., 2012; Peralta et al., 2006; Tang et al., 2006). The mechanistic

model can potentially provide insights into the way in which these

correlations change over time in scenarios in which specific trait archi-

tectures are of interest.

In our assortative mating models, in each generation, we stan-

dardized admixture level HA,g and phenotype Tg in the mating function

(Equation (A2)) to account for different scales in admixture fractions

and phenotypes. With this choice, as the variance of admixture or

phenotype decays, individuals can recognize progressively finer differ-

ences in admixture fraction or phenotype during mate choice. To relax

this strong assumption about mate recognition, we have also exam-

ined a mating function in which the relative preference remains con-

stant in time. Given assortative mating strength c, this choice reduces

the effect of assortative mating compared with a time-varying scaling

factor; however, qualitative patterns are similar (Figure S6).

We have examined a model with a single admixture event at the

founding of the admixed population. Under this idealized model, even

if the founding admixed population starts with a perfect correlation

between admixture fraction and trait value, the correlation decreases

over time and eventually approaches zero in the absence of further

influx from source populations. In principle, the framework can

account for continuous influx; if ancestry–trait correlation exists in

source populations, then such influx would be expected to slow the

decoupling between admixture and phenotype in the admixed

populations under all three mating models, qualitatively maintaining

their relative order in the rate of decoupling.

The model is potentially valuable beyond the human admixture

context. The motivating scenario also applies in naturally occurring

admixture when a single visible trait (e.g., coat color, flower color) is

regarded as a marker for ancestry in an admixed group (e.g., Alberts &

Altmann, 2001). Further, the analysis might be relevant to hybrid

zones, where decoupling of traits from ancestry or each other is

sometimes observed in populations of heterogeneous ancestry

(e.g., den Hartog et al., 2008; Fuzessy et al., 2014). Insights into

homogenization of ancestry and phenotypes in admixed populations

can also be useful for hybrid speciation, in which sustained positive

assortative mating in the admixed population can lead to its reproduc-

tive isolation (Abbott et al., 2013; Mallet, 2005). For non-human

cases, phenomena of interest for model extensions include selective

regimes that differ in the admixed and source populations, sex-biased

mate choice, and assortative mating on socially learned behavior

(e.g., Verzijden et al., 2012; Westerman et al., 2014).

5.3 | Limitations

Our framework can accommodate various genetic architectures and

admixture assumptions, including disassortative mating; however, it

has numerous limitations. First, the model does not include sex bias
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during admixture, a common phenomenon in human admixture pro-

cesses (Adhikari et al., 2017; Goldberg & Rosenberg, 2015; Micheletti

et al., 2020; Wilkins, 2006). A recent genetic model does allow sex

bias, but with no phenotype and with the assortative mating occurring

by population membership rather than by admixture level itself

(Goldberg et al., 2020).

We have also modeled individual admixture as the mean of

parental admixture levels. Stochasticity during genetic transmission is

not considered, nor is the finiteness of chromosomes; our approach

amounts to assuming that the genome contains infinitely many inde-

pendent segments. Thus, “genetic” admixture in our model measures

idealized genealogical ancestry, assuming an equal mixture of ances-

tors from a specified number of generations in the past. This choice is

reasonable in the early stages of an admixture process (Gravel, 2012),

after which it will be informative to model the distinction between

genealogical and genetic ancestry.

Our simulations give each mating pair equally many offspring, so

that variance in reproductive success is not considered. More gener-

ally, the expected number of offspring is independent of genotype

and phenotype, so that no natural selection occurs. Mating pairs are

drawn with replacement, permitting individuals to be included in mul-

tiple mating pairs; thus, we allow a form of nonmonogamous mating.

Although any particular mating pair is unlikely to be a pair of close rel-

atives, such pairs, even sibs, are permissible.

We have examined only a univariate trait, and our trait model

does not incorporate dominance, spatial positioning of trait loci along

a genome, variable effect sizes across trait loci, epistasis, environmen-

tal effects and consequent varying heritability in the phenotype, or

genotype-by-environment interaction. As assortative mating in

humans often operates on sociocultural traits (Kalmijn, 1998;

Rosenfeld, 2008; Schwartz, 2013; Watson et al., 2004), the latter pair

of limitations might be particularly important for human data.

6 | CONCLUSIONS: CONSEQUENCES OF
THE DECOUPLING OF ANCESTRY AND
PHENOTYPE

In the children's story “The Sneetches,” two sympatric populations of

the titular fictional species differ by a polymorphic physical marking

that appears in members of one but not the other population. The

Star-Belly Sneetches possess a star-shaped abdominal marking; the

Plain-Belly Sneetches do not (Geisel, 1961). Through a multistage pro-

cess in which the mark is repeatedly added and removed from individ-

ual Sneetches, phenotypes of individuals are shuffled in relation to

initial population membership, “Until neither the Plain nor the Star-

Bellies knew/Whether this one was that one… or that one was this

one/Or which one was what one… or what one was who.”
Our study was motivated partly by a hypothesis of Parra

et al. (2003) claiming that in humans, assortative mating by color in

Brazil could eventually decouple color from ancestry, so that subpopu-

lations with distinct color could eventually possess similar African

ancestry. We have seen not only that assortative mating by a

quantitative trait that differs between source populations can decou-

ple the phenotype from the ancestry, but also that random mating can

decouple the phenotype from ancestry even faster. In an admixed

population with assortative mating that is affected by a visible geneti-

cally influenced phenotype (such as color in Parra et al. (2003)), mating

by many other genetically influenced phenotypes is random or less

strongly assortative. Thus, in an admixed population, we might expect

that among traits to which genotypes contribute, those with little

influence on mating behavior will decouple from ancestry most rap-

idly. Traits on which assortment does occur, such as color in the Brazil

scenario, will be the slowest to decouple from ancestry—but under

our model, they eventually will do so. Thus, in an admixed population,

phenotypes that once reflected ancestry in the source populations

might no longer be predictive of ancestry after sufficient time has

passed.

The decoupling from the ancestry of genetically influenced phe-

notypes that initially differed between source populations is informa-

tive in relation to systems of social categorization that involve visible

genetically influenced traits. Consider a setting in which differences

among individuals in visible traits such as skin pigmentation contribute

to differences in social categorizations, and in which social justifica-

tions for the categorization system rely on the assumption that the

visible traits correlate with ancestry or with genetically influenced

traits that are not visible. In an admixed population, after enough time,

the simultaneous decoupling from the ancestry of genetically

influenced phenotypes with an initial difference between source

populations generates a scenario in which visible traits salient in social

categorizations are decoupled from all other genetically influenced

traits except those with a genetic basis in the same loci.

Among the many goals of mathematical modeling in population

biology (Rosenberg, 2020; Servedio et al., 2014), two are (a) to charac-

terize the determinants of a biological phenomenon, as we have done

in discerning the effects of genetic and evolutionary parameters on

the decoupling between admixture and phenotype; and (b) to mathe-

matize and test the validity of predictions of a verbal model, as in our

formalization of the decoupling model of Parra et al. (2003). Like a

children's story, a mathematical model with these objectives obtains

insights about the real world by disregarding much of its complexity,

exploring—with some risk of oversimplification—key features of the

real world in the context of the world that it creates.

In “The Sneetches,” the abdominal marking is used by the charac-

ters as a signifier of group membership. It confers to individuals no

other qualities, but a perception by the characters of its correlation

with other traits is consequential for the way that they treat each

other. At the story's end, after the phenotype has been reshuffled

with respect to population of origin, the species remains phenotypi-

cally polymorphic, but the phenotype of an individual has become

uninformative about “ancestry.” The decoupling of “ancestry” and

phenotype has led to a loss of social meaning for the phenotype,

which no longer serves as a signifier of group membership. The char-

acters no longer perceive a correlation between the marking and

other traits, recognizing the lack of information that the marking con-

tains about traits other than itself. In admixed populations, the
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mathematical model suggests that the visible traits used in social cate-

gorizations may come to possess little or no ancestry information.

These traits are then rendered informative about few genetically

influenced traits other than themselves—so that the model provides a

mechanistic explanation for the expression that such traits are “only
skin deep.”
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APPENDIX A. : MATING MODEL DETAILS

This appendix describes the construction of the mating matrix M

under random mating, assortative mating by admixture, and assorta-

tive mating by phenotype, whereM is written

With no selection or sex bias, each individual in the population

has the same expected number of offspring irrespective of ancestry

or phenotype. We assume that the expected number of offspring of

an individual is proportional to the expected number of matings of

the individual, the sum of matrix entries across all mates available

for an individual. Thus, the equal-offspring requirement translates

into an assumption of equal row sums for females that are in turn

equal to equal column sums for males in M. Note that this equal-

offspring assumption independent of ancestry and phenotype

accords with a standard property of assortative mating models that

assortative mating on its own does not alter allele frequencies over

time (Crow & Kimura, 1970; Fisher, 1918; Goldberg et al., 2020;

Jennings, 1916; Wright, 1921; Zaitlen et al., 2017).

A.1. | Three mating models

We write the mating probability in Equation (A1) as

mij = αijψ H ið Þ,f
A,g ,T

ið Þ,f
g ,H jð Þ,m

A,g ,T jð Þ,m
g

� �
for female i and male j, where function

ψ quantifies the dependence ofmij on the ancestry and trait values of pair

(i, j); αij is a normalization constant that is specific to a pair (i, j) and that

enforces constant row and column sums. Because the sum of all entries

in mating matrixM is 1, the row and column sums each equal 1/N.

In random mating, the mating probability is independent of indi-

vidual ancestry and trait values, so that ψ H ið Þ,f
A,g ,T

ið Þ,f
g ,H jð Þ,m

A,g ,T jð Þ,m
g

� �
is

constant across all i and j, and mij has the same value for all mating

pairs. Therefore, for all pairs (i, j), each taken from {1, 2, …, N},

mij = αij=α for a constant α = 1/N2.

In assortative mating by admixture, the mating probability

depends only on the ancestries of potential mates and not on

the phenotypes: ψ H ið Þ,f
A,g ,T

ið Þ,f
g ,H jð Þ,m

A,g ,T jð Þ,m
g

� �
=ψ H ið Þ,f

A,g ,H
jð Þ,m

A,g

� �
and

mij = αijψ H ið Þ,f
A,g ,H

jð Þ,m
A,g

� �
. For positive assortment, the mating function ψ

has higher values if two individuals have similar ancestries and lower

values as the ancestries become more different. For example, in complete

assortment, ψ is 1 if the two input parameters have the same value and

0 if the values differ. For negative assortment, ψ instead increases with

the difference between the ancestries of the members of a mating pair.

In assortative mating by phenotype, the mating probability

depends only on the trait values of potential mates and not on the

ancestries: ψ H ið Þ,f
A,g ,T

ið Þ,f
g ,H jð Þ,m

A,g ,T jð Þ,m
g

� �
=ψ T ið Þ,f

g ,T jð Þ,m
g

� �
and

mij = αijψ T ið Þ,f
g ,T jð Þ,m

g

� �
. The qualitative requirements for the function ψ

are the same as with assortative mating by admixture, but with the

trait values of the mating pair as arguments instead of the ancestries.

We adopt the following form for the mating function:

ψ X ið Þ,f
g ,X jð Þ,m

g

� �
= e

−c X
ið Þ,f
g −X

jð Þ,m
gj j

σXg : ðA2Þ

The finite constant c quantifies the assortative mating strength. Given

two values X ið Þ,f
g ,X jð Þ,m

g

� �
, where Xg = HA,g or Xg = Tg, increasing c lowers

the mating probability, producing stronger positive assortative mating. For

c>0, ψ has value 1 if potential mates have the same ancestry

(or phenotype), decreasing exponentially with increasing difference between

individuals; c<0 indicates negative assortative mating, where pairs with dif-

ferent ancestry (or phenotype) have the highest probability of mating.

At generation g, admixture fraction HA,g takes values in {0, 1/2g,

2/2g, …, (2g − 1)/2g, 1} (Section 2.1), and phenotype Tg takes values in

{0, 1, …, 2k} (Section 2.2). To compare mating schemes, we consider

variables standardized by dividing Xg (HA,g or Tg) by its standard devia-

tion σXg based on its distribution in Hpar
g at generation g. For the

unstandardized variables, because Tg takes a higher value than HA,g,

the effect of assortative mating by phenotype at the same assortative

mating strength c is artificially inflated compared with the effect of

assortative mating by admixture fraction.

With mating function ψ , in mating matrix M, the sum across

potential mates of the matrix entries for a random individual in the

parental pool must be 1/N. To obtain the normalizing coefficients αij,

we use procedures from numerical optimization, as described in the

Supporting Information.

H 1ð Þ,m
A,g ,T 1ð Þ,m

g

� �
H 2ð Þ,m

A,g ,T 2ð Þ,m
g

� �
� � � H N−1ð Þ,m

A,g ,T N−1ð Þ,m
g

� �
H Nð Þ,m

A,g ,T Nð Þ,m
g

� �
H 1ð Þ,f

A,g ,T 1ð Þ,f
g

� �
H 2ð Þ,f

A,g ,T 2ð Þ,f
g

� �
..
.

H N−1ð Þ,f
A,g ,T N−1ð Þ,f

g

� �
H Nð Þ,f

A,g ,T Nð Þ,f
g

� �

m11 m12 � � � m1 N−1ð Þ m1N

m21 m22 � � � m2 N−1ð Þ m2N

..

. ..
. . .

. ..
. ..

.

m N−1ð Þ1 m N−1ð Þ2 � � � m N−1ð Þ N−1ð Þ m N−1ð ÞN

mN1 mN2 � � � mN N−1ð Þ mNN

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ðA1Þ
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A.2. | Simulating the mating models

To calculate the mating matrix M in our simulations, using the mating

function in Equation (A2), we compute an unnormalized N × N mating

matrix ~M, with one matrix entry for each pair containing a female and

a male from the parental pool. Diagonal entries of ~M equal 1; off-diag-

onal entries (i, j) are ~M= e−cΔi,j for male i and female j, where

Δi,j = H ið Þ,f
A,g −H jð Þ,m

A,g

��� ���=σHA,g for assortative mating by admixture and

Δi,j = T ið Þ,f
g −T jð Þ,m

g

��� ���=σTg for assortative mating by trait. For random mat-

ing, c = 0 and all entries equal 1. To produce matrix M, ~M is normalized

as described in the Supporting Information.

APPENDIX B.: EVALUATING THE VARIANCE OF THE

ADMIXTURE FRACTION

This appendix derives Equation (1). Let the random variable Y indicate

the population membership of a random individual in Hpar
g , the paren-

tal pool in generation g for generation g+1. Then

Hf,p
A,g ,H

m,p
A,g =

HA,g withP Y =Hgð Þ= hg
1withP Y = S1ð Þ= s1,g
0withP Y = S2ð Þ= s2,g:

8><
>: ðB1Þ

For the expectation of admixture in the parental pool, we have

E Hf,p
A,g

h i
= E Hm,p

A,g

h i
= EY E½Hf,p

A,gjY�
h i

=
X

y� S1,S2,Hgf g
P Y = yð ÞE Hf,p

A,gjY = y
h i

= s1,g + hgE HA,g½ �= s1,g + hgμg: ðB2Þ

As a consequence of Equation (B2), with μg = E[HA,g], we have

E Hf,p
A,g

� �2
� 	

= E Hm,p
A,g

� �2
� 	

= s1,g + hgE H2
A,g

h i
= s1,g + hgμ

2
g + hgVar HA,g½ �

ðB3Þ

Var Hf,p
A,g

h i
=Var Hm,p

A,g

h i
= s1,g + hgμ

2
g + hgVar HA,g½ �− s1,g + hgμg

� �2
: ðB4Þ

An offspring individual has admixture fraction deterministically

set to the mean of those of the parents:

E HA,g +1½ �= E 1
2

Hf,p
A,g +H

m,p
A,g

� �� 	
= s1,g + hgE HA,g½ �= s1,g + hgμg: ðB5Þ

We obtain the recursion for the variance of the admixture fraction

over a single generation as follows:

where rHA ,g =Cor Hf,p
A,g ,H

m,p
A,g

h i
denotes the correlation of the admixture

fractions in a mating pair. The last step is obtained from

Equations (B2)–(B5). The time-varying rHA ,g value in general depends

on the parameters of the population model, the quantitative trait

model, and the mating model. However, if s1,g = s2,g = 0 and hg = 1,

then we obtain Equation (1) from Equation (B6).

Var HA,g +1½ � = E H2
A,g +1

h i
− E HA,g +1½ �ð Þ2

=
1
4
E Hf,p

A,g +H
m,p
A,g

� �
Hf,p

A,g +H
m,p
A,g

� �h i
− E HA,g +1½ �ð Þ2

=
1
2

E Hf,p
A,g

� �2
� 	

+ E Hf,p
A,gH

m,p
A,g

h i
 �
− E HA,g +1½ �ð Þ2

=
1
2

E Hf,p
A,g

� �2
� 	

+Cor Hf,p
A,g ,H

m,p
A,g

h i
Var Hf,p

A,g

h i
+ E Hf,p

A,g

h i� �2

 �

− E HA,g +1½ �ð Þ2:

=
1
2

1+ rHA ,gð Þ hgVar HA,g½ �+ μ2ghg 1−hgð Þ−2μghgs1,g + s1,g 1−s1,gð Þ
h i

,

ðB6Þ
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