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Summary
Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide association studies (GWASs) are a

powerful way to find genetic loci associated with phenotypes. GWASs are widely and successfully used, but they face challenges related to

the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated

because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG),

which encodes a series of local coalescent trees. Recent computational andmethodological breakthroughs havemade it feasible to estimate

approximate ARGs from large-scale samples. Here,we explore the potential of anARG-based approach to quantitative-trait locus (QTL)map-

ping,echoingexistingvariance-componentsapproaches.Weproposea frameworkthat reliesontheconditionalexpectationofa localgenetic

relatednessmatrix (local eGRM) given theARG. Simulations show that ourmethod is especially beneficial for findingQTLs in thepresenceof

allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied

populations.We use local eGRM to analyze two chromosomes containing known body size loci in a sample of NativeHawaiians. Our inves-

tigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.
Introduction

Identifying trait-associated genetic loci is one of the central

aims of genetics. Over the past several decades, a range of

approaches—prominently including linkage mapping

and genome-wide association studies (GWASs)—have

been developed in order to fill this need.1 In humans,

GWASs have become a tremendous research enterprise,

with millions of study participants enrolled and hundreds

of thousands of trait-associated variants identified.2

For decades, geneticists have noted the usefulness of tree-

based structures for describinggenetic variationand for char-

acterizing the genealogical and evolutionary processes that

create genetic variation. At a single non-recombining locus,

a tree called a gene genealogy describes the shared ancestry

of individual copies of the locus.3 For entire genomes or

genomic regions in which recombination events occurred

in the history of the sample, one can represent the sample’s

shared ancestry via an ancestral recombination graph (ARG)

that encodes the sequence of ‘‘local’’ or ‘‘marginal’’ trees

along the genome,4with recombination events as the source

of differences in topology between neighboring trees. The

ARG encodes all mutation, recombination, and shared

ancestry events in the history of a sample of genomes.

Tree-based approaches to quantitative trait locus (QTL)

mapping—in which a trait is tested for association with a

tree or set of trees describing genetic variation in a region—

have been proposed several times and shown to provide

someadvantages,5–19ashaveapproaches tohaplotype-based

mapping that leverage awareness of tree-like relatedness pat-
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terns among sets of haplotypes.20–23 At the same time,

explicitly tree-based approaches have until recently been

limited by difficulties in estimating locus-level trees at scale.

Further, the dominance of meta-analysis in GWASs24 and

other methods based on summary statistics has meant that

individual-level genetic data are often not available to data

analysts, precluding most tree-based approaches.

In principle, tree-based approaches have the potential to

address three long-standing difficulties of GWASs. First, a

GWAS entails a huge number of statistical tests and requires

a substantial correction for multiple testing as a result.25

Many of these tests are correlated or redundant because the

variants tested occur on the same or very similar underlying

gene-genealogical trees. Testing the trees themselves may

allow for fewer tests.

Second, GWASs are known to be prone tomiss trait-asso-

ciated genetic loci characterized by allelic heterogeneity, in

whichmultiple nearby causal variants affect a trait of inter-

est.26–29 Under allelic heterogeneity, causal alleles with

opposing effects on a trait might be associated with the

same marker allele, diminishing the association signal at

the marker. Allelic heterogeneity is not rare, appearing in

many Mendelian loci identified during the linkage

era30—linkage mapping is robust to allelic heterogene-

ity—and estimated recently to occur at a substantial frac-

tion of complex trait loci29 and expression QTLs.31,32

Tree-based approaches, by focusing on local relatedness

of haplotypes in the sample, can offer robustness to allelic

heterogeneity of a sort similar to that obtained in linkage

analysis.
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Figure 1. Main ideas of the testing framework
(A) Local eGRM framework. Schematic of themarginal trees of an ARG of 4 haploid individuals (A–D). The gold circles on the trees corre-
spond tomutations. The clademarked with the dotted circles is identical at loci 1 and 2, and themutation at locus 2 is informative about
the branch length at locus 1. One or more marginal trees are used to calculate a local eGRM using the method described in the work of
Fan and colleagues.44 This matrix is then tested for association with the phenotypes using restricted maximum likelihood (REML).
(B) Computing the eGRM. This panel is redrawn from the paper of Fan and colleagues.44 A genome-wide genetic relatedness matrix
(GRM) can be viewed as an average of single-locus GRMs for every genotyped locus. An expected GRM (eGRM) can be obtained as a
weighted average of single-locus GRMs defined by each branch in the ARG, where the weights are proportional to the expected number
of mutations falling on each branch.
(C) Allelic heterogeneity. One marginal tree of an ARG with three causal mutations with opposing phenotypic effects.
(D) One marginal tree with one causal mutation. A hypothetical haploid tree in which a causal mutation (gold circle) partitions the in-
dividuals of the tree into descendants and non-descendants. The pronounced phenotype is detected in almost all descendants (gold
dashes at tips) but also in other individuals.
Third, modern GWASs are fueled by imputation, in

which a reference sample is fully sequenced, and then

study samples that are more sparsely genotyped have their

missing genotypes imputed statistically.33,34 The imputed

genotypes can then be tested for association with the trait

of interest. The success of modern imputation approaches

is made possible by the fact that genetic variation is struc-

tured locally in a tree-like way.35,36 At the same time, impu-

tation is most successful if the reference and study samples

are closely related,37–39 and closely related reference sam-

ples are not always available. Testing the tree structures

that underlie imputation may offer a more direct approach

to identifying QTLs that could circumvent the need for

closely related reference samples.

Due to advances in ARG estimation, it may now be

possible to apply tree-based methods at sufficient scale to

detect QTLs. Although estimation of the ARG is extremely

difficult, approximate estimation procedures that operate

on single-nucleotide polymorphism (SNP) array data and

scale to thousands of samples have emerged in the last

few years.40–43 Further, for researchers studying QTLs in

humans, the emergence of large biobanks has meant that

individual researchers or research teams have access to in-
2078 The American Journal of Human Genetics 110, 2077–2091, Dec
dividual-level genetic data in sample sizes that might allow

the identification of trait-associated loci.

Here, we present a tree-based approach to QTL mapping

(Figure 1). We build on a recently proposed representation

of tree-based relatedness, the expected genetic relatedness

matrix, or eGRM44 (see Figure 1B here), independently

identified by Zhang and colleagues42 as the ARG-GRM

and in a phylogenetic context by Wang and colleagues45

as the expected genetic similarity matrix (also see equation

10 in McVean et al.46 for a similar computation). Genetic

relatedness matrices (GRMs) are used in a wide array of sta-

tistical genetic tasks, including adjusting for population

stratification and estimation of heritability.47 Given an

ARG encoding the history of a sample, the eGRM is the

expectation of the GRM assuming that mutations are

placed on the ARG as a Poisson process. In general, we

can compute a tree-based analog of any statistic computed

from genetic variation by taking its expectation given the

ARG.48

Our procedure is to test eGRMs built from local segments

of the ARG for concordance with a phenotype using a

random-effects model fit by restricted maximum likelihood

(REML). Loosely, the test is sensitive to cases in which
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individuals who are more closely related in some local

segment of the genome are likely to be more similar on

the phenotype. This approach is essentially a tree-based

version of previous methods to test local GRMs for concor-

dance with a phenotype, which have been framed vari-

ously as QTL mapping approaches49,50 or local heritability

estimation.51–54 Using tree sequences estimated by

Relate,41 we test our approach in simulations of varying

degrees of allelic heterogeneity, including the case of a

single causal variant. We also use our approach to analyze

real data from a sample of Native Hawaiians. We analyzed

chromosomes 5 and 16 with particular attention to (1)

CREBRF, in which the lack of a population-specific refer-

ence panel has previously precluded the detection by a

GWAS of a known polymorphism with a large effect on

body mass index (BMI),39,55 and (2) FTO, which is also

strongly associated with BMI56–58 and demonstrates allelic

heterogeneity.59
Subjects and methods

Characterizing local relatedness
The key to our approach is a matrix A, called a local genetic relat-

ednessmatrix (local GRM), that characterizes the relatedness of in-

dividuals in a local region to be tested as a candidate QTL. Classi-

cally, a local GRM is calculated on the basis of the observed

variants in a window (e.g., Yang and colleagues60). Our method

is instead based on using the expectation of a local GRM (local

eGRM) given an estimated ancestral recombination graph (ARG).

Figure 1 describes the main ideas of our framework: in each win-

dow, we calculate one genetic relatedness matrix using the ARG’s

marginal trees in that window and then use REML (restricted

maximum likelihood) to test whether the local genetic relatedness

explains phenotypic similarities in the sample. One advantage of

using the ARG to describe genetic relatedness is that information

from neighboring trees is naturally shared. To illustrate this idea,

the dotted circles in Figure 1A show a clade that exists in trees 1

and 2, with a mutation at locus 2 that differentiates tips C and

D. Though the mutation is at marginal tree 2, its presence is infor-

mative about the branch lengths at marginal tree 1, since the rele-

vant subtree is identical in marginal trees 1 and 2.

Figure 1B describes the method we use to calculate the pairwise

expected relatedness matrix (eGRM), developed by Fan and col-

leagues,44 and also how the genetic relatedness matrix is conven-

tionally calculated. Figure 1C shows an example of allelic hetero-

geneity: multiple causal alleles are in close linkage (e.g., on the

same marginal tree of the ARG), so tag SNPs will be linked to

several causal alleles with opposing effects. If the causal variants

are themselves untyped, this can lead to association signals inter-

fering or even canceling each other out at the typed variant. Even

if the causal variants are typed, association power will be

improved if they are tested for association jointly rather than

separately. Figure 1D depicts a hypothetical marginal tree in

which a binary phenotype’s expression across all (haploid) indi-

viduals is shown at the tree’s tips. A single causal mutation on

a specific branch results in a majority of the descendants from

that branch displaying the phenotype. If this branch is known,

it can be included in tests, even if no genotyped mutations fall

on it.
The American Jour
Local GRM
We compute local GRMs from bi-allelic variants in the local win-

dow to be tested as a QTL (as done, for example, by Yang and col-

leagues60). The entry relating individuals i and j in the GRM can be

written as

GRMi;j ¼ 1

l

Xl

k¼1

�
yi;k�2pk

��
yj;k�2pk

�

½2pkð1 � pkÞ�a ; (Equation 1)

where k in an index over the sites considered, l is the total number

of sites considered, yi,k is the number of focal alleles carried by in-

dividual i, and pk is the sample frequency of the focal allele.47 The

constant a determines the relative emphasis placed on rarer vari-

ants in computing relatedness estimates, with larger values giving

greater weight to rarer variants. In this paper, we use a ¼ 1. With

a ¼ 1, the local GRM is a covariance matrix of mean-centered,

standardized genotype counts among individuals, where the stan-

dardization is by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � pÞp

, the standard deviation of the geno-

type under Hardy-Weinberg equilibrium.
Local eGRM
Fan and colleagues44 compute a genome-wide global eGRM,

which is the expectation of the genetic relatedness matrix

(GRM) described by Equation 1 (with a ¼ 1) conditional on the

ARG, assuming that infinite-sites mutations are placed on the

ARG as a Poisson process. The global eGRM can be computed as

a weighted sum of single-locus GRMs implied by each branch in

the ARG. Specifically, each branch in the ARG defines a clade of

tips that descend from the branch. A mutation on that branch

would be inherited by all these tips and so would define a single-

locus GRM following Equation 1. The eGRM is equal to a weighted

average of all such branch-wise GRMs, with weights per branch

proportional to a product mðbÞlðbÞtðbÞ, where mðbÞ is the mutation

rate on the branch, l(b) is the length of the genomic region

spanned by the branch, and t(b) is the length of the branch (i.e.,

the time in the tree that the branch exists). Here, as in Fan

et al.,44 we assume that the mutation rates are the same on all

branches.

We compute the local eGRM for genomic regions of a pre-

defined size. The local eGRM for one tree is a weighted sum over

the tree’s branches. In order to calculate the local eGRM for a

genomic window, we first calculate the local eGRM for all trees

whose genomic intervals overlap the window and then take a

weighted average of these matrices, where the weights correspond

to the fraction of the window covered by each tree’s genomic inter-

val. This approach to computation is redundant (because many

branches exist across multiple marginal trees) and can be amelio-

rated in principle via an approach that records unique branches

only once.48 We did not pursue this solution because of our deci-

sion to work with Relate trees, which do not preserve branch

lengths exactly between neighboring marginal trees.

We computed local eGRMs using egrm software.44
The variance-components model
Let y be quantitative phenotypes for n individuals, X be an n 3 k

design matrix of covariates, and b the covariates’ regression coeffi-

cients. The k covariates may include nuisance variables and poten-

tially confounding factors, such as age, sex, and descriptions of

population structure or global relatedness. Additionally, let In be

the n 3 n identity matrix, and s2e the variance of environmental

noise. Given a GRM A of dimensions n 3 n representing
nal of Human Genetics 110, 2077–2091, December 7, 2023 2079



relatedness among individuals in a local segment of the genome,

we model the phenotypic variation in the sample by

y
��b;s2

a ; s
2
e � N

�
Xb; s2

aAþs2
e In

�
: (Equation 2)

We estimate b, s2a , and s2e with restricted maximum likelihood

(REML). We identify a QTL if the parameter s2a is significantly

different from 0.

To understand the difference between using a GRM based on

observed variants compared with an expectation conditional on an

estimated ARG, note that when A is based on observed variants,

themodel inEquation2 is equivalent to one inwhich the typed sites

in the window receive random, uncorrelated effect sizes with expec-

tation 0 and variance proportional to 1=ð2pð1 � pÞÞa61,62 that

contribute additively to the trait. That is, y ¼ Xbþ Zuþ e, with

X an n 3 k design matrix of covariates with fixed effects b (k 3 1),

Z an n3 l matrix of genotypes at the sites considered with random

effectsu (l3 1), and e an n3 1 vector of random, uncorrelated envi-

ronmental effects.

On the other hand, if A is computed by taking an expectation

over an ARG, the model in Equation 2 is equivalent to one in

which each branch of the ARG incorporated in A receives a

random, uncorrelated effect size with expectation 0 and variance

proportional to mðbÞlðbÞtðbÞ=ð2pð1 � pÞÞa, where p is the propor-

tion of tips that descend from a branch in the relevant span of

the genome, and again mðbÞ is the mutation rate on the branch,

l(b) is the length of the genomic region spanned by the branch,

and t(b) is the length of the branch.
Simulating genealogy and genotypes
Simulating ARGs for one population

We simulated ARGs for one population using stdpopsim63,64

v.0.1.2 using the Python API. We simulated chromosome 1 for

2,000 haploid individuals of African ancestry using the ‘‘OutOfA-

frica_3G09’’ model and msprime65 v.1.1.1 and otherwise default

parameters. We then extracted the genomic region starting at po-

sition 49,000,000 and ending at position 50,000,000. Then, we

randomly assigned pairs of haplotypes to 1,000 individuals to

create diploids.

Estimating ARGs with relate

To simulate genotyping array data, we filtered the simulated ARG’s

variants by retaining 20% of those with a minor allele frequency of

at least 1%. We then used the retained variants to estimate ARGs

with Relate41 using parameters ‘–mode All,’ ‘–mutation_rate

1.25e�8,’ ‘–effectiveN 2000,’ and the human recombination map (-

HapMapphase II, buildGRCh37, providedwith theRelate software).

We thenconverted theoutput to treeSequence format66withRelate’s

tool RelateFileFormats and ‘–mode ConvertToTreeSequence.’
Simulating phenotypes
Choosing the causal variants

We selected causal variants among those that were not retained

in the downsampling scheme described above (‘‘untyped’’). In

the experiments with one causal variant, the selection was uni-

formly at random among variants of a predefined frequency. If

no branch in the local trees subtended the desired frequency,

we chose the nearest possible frequency. In the experiments

with allelic heterogeneity, we defined a causal window with a

physical length of 5 kb in the center of the ARG and randomly

selected a given proportion of untyped variants within the win-

dow to be causal.
2080 The American Journal of Human Genetics 110, 2077–2091, Dec
Choosing the effect sizes

We chose the effect size for each variant on the basis of its allele

frequency, sampling from a normal distribution with expectation

0 and standard deviation inversely proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞp

,

where p is the variant’s minor allele frequency. This corresponds

to the LDAK model with a ¼ �1 (depending on how the model

is parametrized, sometimes a ¼ 1).67 It leads variants with lower

allele frequencies to have effects with larger absolute sizes and

also matches the normalization of the local eGRM/GRM that we

perform. We assume an additive model, where each copy of an

allele contributes to the phenotype equally, regardless of the other

copy at the position, or genotypes at other positions.

In order to obtain the desired local heritability, we added

random noise to the phenotypes such that VE ¼ VGð1 � h2Þ=h2,

where VE is the phenotypic variance due to environmental effects

uncorrelated with genotype, VG is the phenotypic variance due to

genetic effects, and h2 is the desired local heritability.
QTL testing
Local REML

We tested each local relatedness matrix (GRM and eGRM) for asso-

ciation with the phenotypes using GCTA (v.1.94.1)68 and its im-

plementation of restricted maximum likelihood (REML) with tag

‘–reml’ and providing the local relatedness matrix (tag ‘–grm’),

the phenotypes (tag ‘–pheno’), and running the algorithm for a

maximum of 500 iterations. Note that GCTA p values for random

effects in such a model are never larger than 1/2.

GWAS

We tested each typed variant for association with the phenotypes

using python’s statsmodels69 (v.0.13.2) OLS function.

ACAT-V

We use function ACAT from R package ACAT70 v.0.91 to run

ACAT-V on the p values from the GWAS results in a window.
Correcting for population stratification
Simulating phenotypes affected by genetic confounding

In order to test different methods to correct for population strati-

fication in the Hawaiian data, we simulated 50 sets of genetically

confounded phenotypes based on the Native Hawaiian popula-

tion in the Multiethnic Cohort MEC.71 We randomly sampled

1,000 causal variants from the GWAS variant set (filtered for minor

allele frequency and LD, see below) from chromosomes 1–3 to be

causal. We assigned the causal variants with phenotypic effect

sizes that depend on their allele frequencies (see simulating phe-

notypes). We added random noise to the phenotypes such that

the simulated trait heritability was 0.45, which corresponds to

the estimated heritability for BMI in Samoans.55

Correcting for population stratification

We assessedmethods for correcting for population stratification by

testing a region near CREBRF (chr5:172,750,000–173,000,000) for

association with the simulated phenotypes affected by genetic

confounding. The correction methods used were (1) 100 principal

components taken from the LOCO eGRMwithout chromosome 5

(in the case of association testing with local eGRM) or LOCOGRM

without chromosome 5 (in the case of association testing with a

GWAS and local GRM) as fixed effects, (2) the LOCO GRM as a

random effect in the case of a GWAS, and (3) a two-step approach

where we first obtained the residuals from fitting a model with the

LOCO eGRM (or GRM) as a random effect, and then fit the local

eGRM (or local GRM) to these residuals. The GWAS with the

fixed-effect model were run using PLINK272 (v.v2.00a3.7LM
ember 7, 2023



AVX2 Intel [24 Oct 2022], www.cog-genomics.org/plink/2.0/), and

the GWAS with the random effect model were run using GCTA

(v.1.94.1).68 The PCA for GWAS was run with EIGENSTRAT73

and the PCA for local eGRM and GRM was run using GCTA.
Estimating statistical power
Null simulations

In order to determine a significance cutoff for each simulation

configuration, we used 300 simulated ARG replicates, and we as-

signed each individual from each ARG a random N ð0;1Þ pheno-
type value irrespective of genotype. We performed association

tests for each association method, for each variant set/tree type,

and for each testing window size, i.e., for every power simulation

configuration that affects the number of association tests. We set

the significance cutoff such that the family-wise error rate (i.e.,

the fraction of replicates containing at least one significant associ-

ation) was 5%.

Power as a function of genetic architecture

For each parameter combination of variant set/tree type, causal

variant proportion, causal window size, testing window size, and

local heritability, we counted the number of replicates for which

the p value of at least one window (for ACAT-V, local eGRM, and

local GRM) or variant (for GWAS) exceeded the significance

threshold defined with the null simulations.
Application to real data
Transforming the phenotypes

Phenotype data for body mass index (BMI) was available for 5,371

people from the Native Hawaiian population of the Multiethnic

Cohort MEC,71 along with sex and age. To ensure that the pheno-

type residuals would follow a standard normal distribution, we

performed a transformation typical for BMI data. Namely, we strat-

ified by sex, regressed out age and age squared, and removed indi-

viduals for which the residual was more than six standard devia-

tions removed from the sex’s mean. Then, we inverse rank

normalized the phenotypes.74

Estimating the ARG with relate

In total, 5,384 self-identified Native Hawaiians from theMultiethnic

Cohort (MEC) were genotyped on two separate GWAS arrays: Illu-

minaMEGAand IlluminaGlobal Diversity Array (GDA). After taking

the intersection of SNPs found on both arrays, we removed variants

that were genotyped in fewer than 95% of people in the sample, as

well as variants out of Hardy-Weinberg equilibrium (p < 10�6). We

also applied a filter for peoplewithmore than 2%missing genotypes

but removed no one with this filter.

With approximately 990,000 SNPsafterquality control,wephased

the genotypes with EAGLE75 by using its default hg38 genetic map.

We inferred ancestral alleles by using the Relate add-on module

withancestral genomehomo_sapiens_ancestor_GRCh38_e86.tar.gz,

downloaded from ftp://ftp.ensembl.org/pub/release-86/fasta/ance

stral_alleles/. We divided the genome into segments containing

10,000 SNPs and ran Relate on these segments in parallel with all

default parameters per the user manual.

Inferring the LOCO eGRM to correct for population structure

For LOCO eGRM, we first inferred the segment-wise eGRMs for all

chromosomes except chromosome 5 or 16, depending on which

chromosome we were analyzing. We combined the segment-

wise eGRMs into a global eGRM by taking their weighted sum,

where the weights were given by the expected number of muta-

tions in each eGRM, which is a parameter that is provided in the
The American Jour
output of egrm.44 For LOCO GRM, we used PLINK2’s ‘‘–make-

rel’’ functionality.

Determining the significance cutoffs

The cutoffs in Table S1 were calculated for a genomic region of

length 1 Mb. We computed the effective number of independent

tests for each method as the number of tests for which the signif-

icance cutoff we obtain corresponds to a Bonferroni correction.

For our GWAS, the effective number of tests was 281.2, and for

local eGRM with 5 kb testing windows, 31. The standard

genome-wide significance for a GWAS is 5 3 10�8, which corre-

sponds to the cutoff for one million independent test with

Bonferroni correction. To approximate the genome-wide cutoff

value for local eGRM, we assume that the ratio of 281
31 GWAS

tests to local eGRM tests for a given region holds across the

genome. We thus set the genome-wide local eGRM cutoff to

0:05

106 � 31

281

z4:53 10�7. Following the same logic, we set the

genome-wide local GRM cutoff to
0:05

106 � 60

281

z2:33 10�7.

Testing for QTLs

We ran our local eGRM method to test for correspondence be-

tween the transformed phenotypes and the estimated ARG around

the CREBRF region in windows of 5 kb. We corrected for popula-

tion stratification by using egrm to estimate the LOCO eGRM

(leaving out chromosome 5 or 16). We further used PLINK76

(v.1.07) to test for association between the genotypes on chromo-

somes 5 and 16 and the transformed phenotypes. To generate

principal components as covariates for the GWAS, we held out

the focal chromosome being tested for association, and generated

the 100 PCs using EIGENSTRAT73 after additionally filtering out

variants with minor allele frequency <1% and filtering for LD us-

ing command using –indep-pairwise 50 5 0.8 in PLINK. Finally, we

removed the windows with positions overlapping the Encode

blacklist of problematic regions in the genome.77
Results

We compared our framework based on computing the ex-

pected genetic relatedness matrix from an inferred ARG,

referred to here as local eGRM, with three other association

methods: a GWAS, in which each variant is tested sepa-

rately; local GRM, which for each testing window calcu-

lates a genetic relatedness matrix based on the typed vari-

ants within the window (see subjects and methods); and

ACAT-V,78 which for each window combines the variant-

level p values from the GWAS and is especially powerful

when a small proportion of variants within a window are

causal. Although ACAT-V is designed for and most typi-

cally applied to sequence data, our focus here is on array

data, and so we show results of ACAT-V applied to simu-

lated array data in the main text, deferring comparisons

with complete data to supplementary figures.

Calibrating the type I error rate by simulation

To determine the p value cutoffs for each method, we per-

formed null simulations for each parameter combination

of variant set or tree type and testing window size, i.e.,

for every simulation configuration that could lead to a
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Figure 2. Setting p value cutoffs for family-wise error rate of 5%
The most significant p value for any window (local GRM, local
eGRM, ACAT-V) or any SNP (GWAS) in each of the 300 replicates
is shown on the y axis for each association method and ARG type/
variant set, starting with the lowest minimum p values on the left.
The testing window size was 5 kb. The vertical black line corre-
sponds to 5% of the replicates.
different number of tests required per ARG. For each

parameter combination, we simulated random pheno-

types for all individuals in the sample, and we recorded

the smallest p value resulting from the tests of the simu-

lated chromosome against the null phenotypes. We deter-

mined the significance cutoff such that the family-wise er-

ror rate was 5% in null simulations (Table S1). Figure 2

shows the ordered p values for one of these null simula-

tions. It shows the general pattern that can be seen for

all parameter combinations, namely that the multiple

testing burden is highest for a GWAS and lower for the win-

dow-based association tests ACAT-V, local GRM, and local

eGRM. We can compare the results in terms of the number

of ‘‘effective tests’’ implied by the p value cutoffs necessary

to achieve a family-wise error rate (FWER) of 0.05—that is,

the number of tests that would lead to the same cutoff un-

der a Bonferroni correction. For 5 kb windows and Relate

trees, the local eGRMmethod applied to a 1megabase win-

dow entails z31 effective tests. In contrast, a GWAS on

typed variants implies z280 effective tests, or z 9 times

as many as the local eGRM method. Further, the cutoffs

are more stringent for a GWAS when all variants are used

rather than only the subset of variants selected for geno-

typing, whereas the difference between using only typed

variants and all variants is much smaller for the window-

based methods.

The null simulations were also useful to determine how

well the local eGRM method is calibrated with regard to

the distribution of p values under the null. The quantile-

quantile plots in Figure S1 confirm for multiple simulation

configurations that both local eGRM and local GRM pro-

duce close-to-uniformly-distributed but slightly conserva-
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tive p values. Details of the p value distribution do not in-

fluence the simulation results below, since we choose the

cutoff for significance empirically based on the null

simulations.

Local eGRM exhibits power advantages in cases of allelic

heterogeneity

We used simulations to understand the power of our frame-

work to find true trait-relevant genetic regions. As with the

null simulations, we simulated 200 replicates of realistic hu-

man ARGs for chromosome 1 of 1,000 Africans under the

out-of-Africa model using stdpopsim.63 We simulated phe-

notypes for each individual in each ARGwith a variety of ar-

chitectures inside a trait-relevant genomic window by vary-

ing the size of the testing window, the number of causal

variants in the window (a single causal variant or allelic het-

erogeneity with varying proportions of causal variants), and

the heritability explained by variants in the window.

We compared the power of the following approaches:

GWAS on both typed and all variants, local GRM with

both typed and all variants, local eGRM with Relate trees

estimated from typed variants, local eGRM with true trees,

and ACAT-V with both typed and all variants.

First, we investigated power in the presence of allelic het-

erogeneity, i.e., multiple causal variants within close phys-

ical proximity and thus genetically linked with each other.

Within a predefined causal window of the genome, each

untyped variant has a given probability of being causal.

Some summary statistics on the numbers of causal variants

per causal window are given in Table S2.

Each causal variant is givena randomphenotypic effect size

suchthat lociwith lower-frequencyminoralleles tendtobeas-

signed largerabsoluteeffect sizes, as isobserved inhumandata

(see subjects and methods for details). Figure 3 shows power

results for causal window of size 5 kb, with 20% of variants

causal (Figures 3A and 3B, median 4 causal variants per win-

dow) or 50% of variants causal (Figures 3C and 3D, median

11 causal variants per window). We also varied the local heri-

tability and the testing window sizes (5 kb for Figures 3A and

3C, 10 kb for Figures 3B and 3D) for the window-based tests.

For the results obtained with a more extensive set of simula-

tionparameters, including results that incorporate both typed

and untyped variants, see Figure S2.

Across simulated genetic architectures with allelic het-

erogeneity, our local eGRM method consistently has

higher power than other approaches when analyzing array

data. Across the local heritability values simulated in

Figure 3, the local eGRM approach with 5 kb analysis win-

dows has on average 17% higher power than a GWAS with

20% of variants causal, and 31% higher power when 50%

of the variants are causal. The other three methods (GWAS,

local GRM, ACAT-V) performed similarly to each other. In

contrast, when using the true ARG and all variant informa-

tion, as would be captured by accurate sequencing data, a

GWAS, ACAT-V, and local GRM all outperform local

eGRM (Figure S2), even when local eGRM is performed

on the true trees.
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Figure 3. Power comparisons under allelic heterogeneity
Each panel shows the power to detect an association for 4 methods using array-like data when there is a 5 kb causal window. In (A) and
(B), phenotypes are determined by 20% of the untyped variants in the window, while in (C) and (D), phenotypes are determined by 50%
of the untyped variants in the window. In (A) and (C), a 5 kb test window is used (matching the simulated causal window size). In (B) and
(D), a 10 kb test window is used. Error bars correspond to one standard error.
Wealsoassessed thepowerof eachmethod forphenotypes

that have a single untyped causal variant with allele fre-

quency 0.02 (Figures 4A and S3A) or 0.2 (Figures 4B and

S3B). With a single causal variant, local eGRM is roughly

comparable to theothermethods, operating at a slightdisad-

vantage when the frequency of the causal variant is low

(0.02) and perhaps a slight advantage when the frequency

of the causal variant is higher (0.2).

Tables S4–S7 show how many replicates were found to

contain a significant peak by two methods. Generally,

the concordance was higher for true ARGs than for

Relate-estimated ARGs. The highest concordance is gener-

ally between a GWAS and ACAT, followed by the other

pairs which have similar concordances. Tables S8 and S9

show analogous results for null simulations.

Correcting for population stratification

The simulations of the power analysis were performed on

samples from a panmictic population. In real GWAS set-

tings, however, samples are often affected by population

stratification,79–82 in which genotypes appear correlated
The American Jour
with phenotypes because of confounding rather than

because of close linkage to causal variants. In GWASs, the

most popular strategies for correcting for population strat-

ification are inclusion of a random effect for the global

GRM83 and inclusion of fixed effects for the first several

principal components of a standardized genotype ma-

trix,73 obtained by eigendecomposition of a GRM.

We simulated phenotypes affected by genetic confound-

ing using the Native Hawaiian genotypes in order to test

several approaches for correcting population stratification.

In particular, we randomly chose variants on chromosomes

1–3 in the Hawaiian individuals to be causal and simulated

phenotypes on the basis of those genotypes with a heritabil-

ity of 0.45.We then tested a regionon chromosome5,which

contained no causal variants, for association using different

methods to correct for population stratification. These

methods included: adding fixed effects for 100 principal

components of the LOCO (leave-one-chromosome-out)

eGRM or GRM, using the LOCO GRM as a random effect

(for the GWAS only) and a two-step procedure (for tests of

the local eGRM and local GRM). In the two-step procedure,
nal of Human Genetics 110, 2077–2091, December 7, 2023 2083
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Figure 4. Power comparisons with one causal variant
Each panel shows the power to detect an association for 3 methods using array-like data when there is a causal variant at a frequency of
either 0.02 (A) or 0.2 (B). Association tests with methods local eGRM and GRM were performed in genomic windows of 5 kb. The error
bars correspond to one standard error.
we first fit a random effect for the LOCO eGRMor GRM and

saved the residuals. In the secondstep,we tested the residuals

for association with the local eGRMs or GRMs. We assessed

how well the methods corrected for stratification through

the distribution of the p values of the association tests in

the test region. As shown in Figure S5, including 100 PCs

did not lead to uniform p values for the GWAS or local

eGRM. This is in line with the complex structure of the Ha-

waiian population.84 For the GWAS, including the LOCO

GRMdid produce uniform p values. Correcting for stratifica-

tionwithaLOCOrandomeffect, i.e., using amodelwith two

random effects, led to convergence problems in some cases

(results not shown), but the two-step procedure produced a

nearly calibrated p value distribution. It is also in line with

other commonly used LMM association methods.85–89

Thus, for the local eGRM analysis of the Native Hawaiian

data, we decided to use the two-step method in the case of

local eGRM and the LOCO GRM method in the case of the

GWAS. In the case of local GRM, all stratification correction

methods that we tested led to somewhat conservative p

values.We chose to use the two-stepmethod for the analysis

of the Hawaiian data in order to be consistent with

local eGRM.

Applying local eGRM to known associations with BMI in

the understudied Native Hawaiian cohort of the MEC

We compared the results of local eGRM, local GRM, and

the GWAS using the Native Hawaiian subset within the

Multiethnic Cohort (MEC),71 for which we had genotype

array data and BMI values for 5,371 individuals. We

analyzed chromosomes 5 and 16, with a special focus on

the loci containing CREBRF on chromosome 5 and FTO

on chromosome 16.

On the basis of the phased genotypes, we used Relate to

estimate the ARG for the whole genome. For the local

eGRM association testing, we used egrm44 to infer the
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LOCO (leave-one-chromosome-out) eGRMs from this

ARG. We then fit a linear mixed model with the LOCO

eGRM as a random effect to the transformed BMI pheno-

types and saved the residuals. Finally, we tested the resid-

uals for association with the ARG using local eGRM. For

local GRM association testing, the procedure was analo-

gous, except that we used the residuals that resulted from

using the LOCO GRM as a random effect. In the case of

the GWAS, we corrected for population stratification by

including the LOCO GRM as a random effect in the associ-

ation model.

The Manhattan plots of chromosome 5 (Figure 5) and

chromosome 16 (Figure S6) show the results of the associ-

ation tests. The gray vertical lines in all real data figures are

hits for body mass index or weight identified in the GWAS

catalog (https://www.ebi.ac.uk/gwas/). These GWAS cata-

log hits were mostly identified in samples much larger

than the one we analyze here. None of the three associa-

tion methods found a genome-wide significant signal on

chromosome 5. However, there is a robust local eGRM

peak at the end of chromosome 5, where CREBRF is

located. On chromosome 16, all three methods have a

notable peak that does not quite reach genome-wide sig-

nificance centered on FTO (Figures S6 and S7).

CREBRF harbors a missense mutation, rs373863828

(GenBank: NM_153607.3) (c.1370G>A [p.Arg457Gln]),

which has a large effect on adiposity. This variant is

observed in Pacific Islanders with a frequency as high as

26% in Samoans. However, is very rare or unknown in peo-

ple without recent ancestry from Polynesia.55 The associa-

tion signal was originally detected with body mass index

(BMI) in a sample of �3k Samoans55 at a linked tag SNP,

rs12513649, which was on the Affymetrix 6.0 array. How-

ever, rs373863828 was not included in many databases

typically used for imputation, not even those that include

diverse populations (e.g., 1000 Genomes Project or
ember 7, 2023
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Figure 5. Association results for Hawaiian
cohort of the MEC for chromosome 5
Blue dots are per-window negative log10 p
values for the local eGRM, orange dots are
per-SNP results for GWAS, and pink dots are
per-window results for local GRM. The hori-
zontal dashed lines are the genome-wide sig-
nificance cutoffs (5 3 10�8 for GWAS, 2.3 3
10�7 for local GRM, and 4.5 3 10�7 for local
eGRM). The gray vertical lines are SNPs found
in the GWAS catalog that were found to be
associated to traits ‘‘body mass index’’ and
‘‘weight.’’We corrected for population stratifi-

cationwith theresidualsmethod inthecaseof localeGRMandGRM,andLOCOGRMinthecaseofGWAS.CREBRF is locatedat theendof the
chromosome around 170 Mb.
Haplotype Reference Consortium), and so it was not well

imputed at the time of the study. Since our method does

not rely on an imputation step, testing this locus for asso-

ciation was of special interest. Figure 6 shows a zoomed-in

view of the locus with association results for local eGRM,

local GRM, and GWAS. The pink area shows the coordi-

nates of CREBRF; the red vertical line is the causal variant

rs373863828, and the gray vertical line immediately to

the left of CREBRF is rs12513649, the tag SNP identified

in a sample of �3k Samoans.55 Local eGRM has a robust

peak around the causal SNP, with the window with the

lowest p value falling just short of the genome-wide cutoff

(0.2 log10 units below, or approximately 7.2 3 10�7

compared with a cutoff of approximately 4.5 3 10�7).

The distances between the observed peaks and the causal

SNP rs373863828 are in line with the distances between

peaks and causal variants at frequency 0.02 observed in

our simulations (Table S3; Figure S4). Local GRM, which

uses the relatedness calculated based on the observed var-

iants, does not have a peak at the causal locus. This is in

line with our explanation of the simulation results, that

the more accurate measurement of local relatedness pro-

vided by the local eGRM enhances the local GRM

approach. In the GWAS results, a single SNP is visibly

elevated to the right of CREBRF, which is 1.5 log10 units

below the genome-wide cutoff. Correlations among p

values produced by the three methods across the chromo-

some, which are generally low, are shown in Figures S8

and S9.

Chromosome 16 harbors FTO, which is a well-studied lo-

cus associated with human obesity known to have high

allelic heterogeneity.59 The three methods perform simi-

larly here (Figure S7) with a robust, but not significant,

peak at this locus. The most significant p value of local

GRM, eGRM, and GWAS are 0.87, 1.2, and 1.4 log10 units

below their respective cutoffs.
Discussion

We developed an approach to QTL mapping that uses esti-

mated ARGs to characterize local relatedness and show

that it provides advantages complementary to several ex-

isting approaches to QTL mapping with SNP array data.
The American Jour
Specifically, our approach is robust to allelic heterogeneity

and can assist in identifying QTLs even when the causal

loci are not well tagged by any single array SNP and cannot

be imputed because of a lack of a population-specific refer-

ence panel.

In cases of allelic heterogeneity, a marker variant can be

linked with multiple causal variants that can have

opposing effects, leading to their association signals inter-

fering and causing difficulties for a GWAS. The local GRM

and local eGRM approaches we consider here both natu-

rally accommodate allelic heterogeneity, because even if

there are multiple causal variants in a trait-relevant region,

it should still be the case that individuals who are more

closely related in the region tend to be more similar on

the phenotype. One locus that is known for its strong asso-

ciation with BMI and that also displays allelic heterogene-

ity is FTO on chromosome 16. We found that all three

methods were able to detect some evidence of a QTL in

this region in the Native Hawaiian Cohort of the Multi-

ethnic Cohort MEC.71 However, our simulations show

that tests of the local eGRMhave an advantage in detecting

loci with allelic heterogeneity when the causal loci are un-

typed. The local GRM and eGRM approaches differ in that

the local eGRM takes into account information about local

branch lengths drawn from mutations occurring in neigh-

boring regions, since trees in neighboring regions tend to

sharemany of the same coalescent events with the focal re-

gion. Thus, the local eGRM can sometimes capture local

genetic relatedness more accurately than the local GRM,

particularly for small testing windows.

We also analyzed CREBRF, which has a causal variant for

adiposity that is at high frequency in humans with Polyne-

sian ancestry but that has previously not been well

imputed because of a lack of population-specific imputa-

tion panel. Although none of the QTL detection methods

tested reached genome-wide significance, local eGRM had

a robust, visually striking peak in the vicinity of CREBRF

that nearly reached genome-wide significance, which was

less marked in the results of our GWAS and even less in

the results of local GRM. In cases like this, knowledge of

the underlying shared ancestry in the region can stand in

for imputation, in that, even if some variants are untyped,

the local marginal trees may contain branches that pick

out the same or nearly the same sets of haplotypes
nal of Human Genetics 110, 2077–2091, December 7, 2023 2085



Figure 6. Association results for Hawaiian
cohort of the MEC around CREBRF
Blue dots are per-window negative log10 p
values for the local eGRM, orange dots are
per-SNP results for GWAS, and pink dots
are per-window results for local GRM. The
horizontal dashed lines are the genome-
wide significance cutoffs (5 3 10�8 for
GWAS, 2.3 3 10�7 for local GRM, and
4.5 3 10�7 for local eGRM). The vertical
shaded area delimits the coordinates of
CREBRF, and the pink vertical line within
it is the location of the causal SNP
rs373863828 (GenBank: NM_153607.3)

(c.1370G>A [p.Arg457Gln]). The gray vertical lines are SNPs found in the GWAS catalog that were found to be associated to traits
‘‘body mass index’’ and ‘‘weight.’’ Other than rs12513649, which was found in a sample of 3,072,55 these hits were found in samples
of at least 158,284 individuals.90–96
(Figure 1D). In some sense, imputation followed by a

GWAS on imputed markers is conceptually roundabout:

an ARG-like structure is often inferred in order to perform

imputation, such as by the Li & Stephens approach,97

which is also the basis for recent approaches to ARG esti-

mation.40,41 In our approach, we test the structure on

which imputation is performed—that is, the approximate

local tree—rather than the imputed variants. Such an

approach may facilitate the identification of trait-associ-

ated loci in understudied populations.

Our method adds to a long list of approaches for identi-

fying trait-associated loci. First, and perhaps most obvi-

ously, our method is a tree-based version of methods to

test local GRMs for concordance with a phenotype.49–54

As discussed above, the advantage of our approach over

such methods stems from better estimates of local related-

ness achieved by estimated ARGs. Further, our method can

be seen as a generalization of identity-by-descent (IBD)

mapping,53,98,99 where our method considers putative

IBD over short regions as estimated by local trees in addi-

tion to the relatively large (multiple centiMorgan) seg-

ments that can be identified as recent IBD. IBD mapping,

in turn, can be seen as a generalization of linkage mapping

that uses IBD among pairs of people who are not closely

related rather than only among close relatives. Our

method is also closely related to haplotype mapping, and

in particular approaches to haplotype mapping that esti-

mate tree-like structures to describe relatedness among

sets of haplotypes.20–23 Finally, our method adds to a tradi-

tion of approaches for identifying trait-involved loci that

are explicitly tree based.5–19 Whereas most previous tree-

based approaches to mapping were limited to samples in

the dozens because of difficulties with ARG estimation,

modern ARG estimation frameworks enable a substantial

gain in power using sample sizes into the thousands.

Another recent approach that used large estimated ARGs

to identify trait-associated loci came from Zhang and col-

leagues,42 who developed an ARG estimation method,

ARG-Needle, to identify trait-associated variants in a sam-

ple of more than 300,000 people. Our approach is comple-

mentary to theirs. Whereas Zhang and colleagues also

identify and leverage the eGRM, which they term the
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ARG-GRM, they use it for genome-wide tasks such as heri-

tability estimation rather than calculating the eGRM for a

local region. In their searches for trait-associated variants,

they sample mutations from the ARG and test them indi-

vidually, which is equivalent to testing branches or clades

from the ARG. A promising future direction is to combine

our approachwith theirs, using ourmethod to prioritize re-

gions and then sampling mutations within that region in

an attempt to localize the signal.

Bothour results and those of Zhangandcolleagues42point

toadvantagesofusingestimatedARGs insituations inwhich

genotype data are incomplete. In contrast, with complete

data on underlying genetic variants, our simulations suggest

that our tree-based approach is outperformed by other

methods. This is sensible: in the scenarios we simulate, if

all variants are known, then the tree provides no additional

information. The local coalescent trees are helpful when

dataare incompletebecause theyprovideaguide to thestruc-

ture of unobserved mutations.

Local coalescent trees could in principle outperform full

sequence data in other settings as well. One such setting is

in combination with a model for natural selection on trait-

associated variants. Selection will distort local trees, and

thus signals of selection inferred from the trees might be

used toprioritize trees or clades for investigationwith respect

to traits that could have been under selection in the history

of the sample. Another relevant setting is ascertainment, in

which individuals are sampled for inclusion in the study

on the basis of their trait values. Such ascertainmentmimics

(extremely recent)natural selection inthat it createsa sample

of individuals selected on their phenotypes, and distortions

in local trees under ascertainment could serve as evidence

that the local region is trait associated.

Our work here is an initial report of some advantages of a

tree-based local relatedness approach to QTLmapping. The

limitations of our current approach raise promising ave-

nues for future investigation.

Here, we included all branches in the ARG within a

genomic window in the eGRM, and we weighted them as

a function of their branch length, span in the genome,

and the number of tips descending from them. In princi-

ple, one could alter the weighting of branches, even
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choosing to leave some branches out, perhaps to form a

time-specific eGRM.44 The absolute value of GWAS effect

sizes is routinely observed to be negatively correlated

with minor allele frequency, a pattern that could be ex-

plained by stabilizing selection on traits keeping large-ef-

fect variants at low frequency.100–102 The ‘‘a-model’’ we

use to simulate effect sizes is in line with the basic observa-

tion of larger effect sizes at lower-frequency variants, as is

our practice of estimating a GRM in which variants are

standardized by a factor proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞp

, which

is equivalent to assuming that the contribution to herita-

bility of a causal variant does not depend on its frequency.

However, the a-model is only a loose match to the

observed distribution of effect sizes as a function of allele

frequency,102,103 and using approaches to normalization

or weighting of branches informed bymore refinedmodels

of selection on trait-associated variation could improve

performance in real data.

We did not consider errors in estimation of the ARG,

instead treating marginal tree estimates from Relate as if

they represented the true marginal trees. Figure S2 shows

that using estimated trees from array data decreases power

compared with using the true trees. Our main focus here

is hypothesis testing, but a broader consideration of local

eGRMs in attempts to estimate locally explained heritability

will entail consideration of the effect of errors in ARG recon-

struction on heritability estimates and their standard errors.

The variance-components model underlying our appr-

oach also assumes that in QTL windows, every branch will

be associated with some normally distributed effect on the

phenotype. This assumption is reasonable for QTLs with

high levels of allelic heterogeneity but is not designed for

cases with only one causal variant, and it is likely the reason

for the diminished advantage of local eGRMover a GWAS in

the simulations with one causal variant compared to those

with allelic heterogeneity. It is worth exploring the applica-

tion of methods that allow sparse architectures to the

eGRM,104 which might present advantages even in cases

with sparse genetic architectures due to reduced multiple

testing. Further, although here we test an additive architec-

ture, it may be possible to modify our approach to look for

QTLs that act in a dominant, recessive, or locally epistatic

manner by computing modified local eGRMs.19,105,106

We tested various methods of correcting for population

stratification. For this, we simulated phenotypes on the basis

of the realNativeHawaiiandata.Thisallowedus toaccurately

capture the complicated populationhistory.We showed that

the false-positive rate of local eGRM QTL mapping can be

controlled via the LOCO eGRM in a two-step procedure.

However, there are many remaining avenues to explore

regarding population stratification and assortative mating.

We used ARGs estimated by Relate41 for both simulated

and real data. Although tsinferþtsdate40,43 scales to much

larger sample sizes than Relate, we used Relate because of ev-

idence that it provides more accurate branch length esti-

mates than tsinferþtsdate,107 which is reflected the observa-

tion of Fan and colleagues44 that Relate-based eGRMs are
The American Jour
more accurate than those formed from tsinferþtsdate. An

approach to QTL mapping based on topology rather than

branch length might open up application to much larger

sample sizes via tsinferþtsdate. ARG-Needle,42 which was

recently released for general use, may also allow the proced-

ures developed here to be used with tens or hundreds of

thousands of individuals.

We tested forQTLsof size5 kilobases or10kilobases. These

sizes are arbitrary, but the approach of a window-based test

also allows for flexibility. For example, windows could be

chosen to form gene-level tests. It is likely possible to reduce

the number of tests performed by adaptively choosing win-

dows on the basis of the extent to which tree topologies

change within the window. For example, in the test of

CREBRF inNative Hawaiians, a singlemarginal tree spanned

the entirety of CREBRF, likely because the genotyping array

included few SNPs within CREBRF. Testing this marginal

tree only once is more sensible than testing identical win-

dows repeatedly, as our current approach does. Building a

better approach will likely require an understanding of

howestimated tree topologies changeas a functionof sample

size, the local density of typed SNPs, the local recombination

rate, and the ages of the QTL and the causal mutation.

Importantly, the method as currently implemented is

computationally intense because of three time-consuming

steps: estimating approximate ARGs with Relate,

computing the eGRM, and fitting a linear mixed model

with GCTA. Regarding the first step, although Relate is

much faster than previous approaches to ARG estimation,

it can still be time consuming to run on large samples. As

mentioned above, tsinferþtsdate scales to larger samples

than Relate, at the cost of less accurate branch length esti-

mates.107 ARG-Needle is reported to run on very large sam-

ples. Improvement of tsinferþtsdate’s branch length esti-

mates or using ARG-Needle could allow the estimation of

approximate ARGs suitable for our approach on larger sam-

ples. The second step, fitting the eGRM, is slow in very

large samples because the computation entails a compo-

nent for every branch on the ARG. As noted above, our

approach to eGRM estimation is slower than it might be

because we touch redundant branches of local trees multi-

ple times, which can be ameliorated via a branch-based

approach to computing local eGRMs.48 Further, as noted

by Zhang and colleagues,42 it is possible to take a Monte

Carlo approach to eGRM estimation, placing mutations

on the ARG randomly at high rate. The GRM computed

from these randomly placed mutations is an approximate

eGRM that retains many of the advantages of the true

eGRM. Fortunately, the third step of running the mixed

model has been a major target for speedups among statisti-

cal geneticists, so we will be able to adopt existing ap-

proaches when working with larger samples.86,108

Since before the time of Zaccheaus (Luke 19:4), people

have been climbing trees to get a better view. Here, we

explored a coalescent-tree-based approach to QTL map-

ping, showing that the expectation of the local GRM con-

ditional on the ARG allows detection of QTLs under allelic
nal of Human Genetics 110, 2077–2091, December 7, 2023 2087



heterogeneity or in cases in which genotype imputation is

difficult. Local eGRMs are only one case of a general frame-

work for computing ARG-based analogues of statistics typi-

cally computed on genetic variants.48 The advantages of

this general framework for a broad range of statistical-

and population-genetic tasks have yet to be explored.
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90. Tachmazidou, I., Süveges, D., Min, J.L., Ritchie, G.R.S., Stein-

berg, J., Walter, K., Iotchkova, V., Schwartzentruber, J.,

Huang, J., Memari, Y., et al. (2017). Whole-genome

sequencing coupled to imputation discovers genetic signals

for anthropometric traits. Am. J. Hum. Genet. 100, 865–884.

91. Zhu, Z., Guo, Y., Shi, H., Liu, C.L., Panganiban, R.A., Chung,

W., O’Connor, L.J., Himes, B.E., Gazal, S., Hasegawa, K., et al.

(2020). Shared genetic and experimental links between

obesity-related traits and asthma subtypes in uk biobank.

J. Allergy Clin. Immunol. 145, 537–549.

92. Kichaev, G., Bhatia, G., Loh, P.R., Gazal, S., Burch, K., Freund,

M.K., Schoech, A., Pasaniuc, B., and Price, A.L. (2019).

Leveraging polygenic functional enrichment to improve

gwas power. Am. J. Hum. Genet. 104, 65–75.

93. Pulit, S.L., Stoneman, C., Morris, A.P., Wood, A.R., Glaston-

bury, C.A., Tyrrell, J., Yengo, L., Ferreira, T., Marouli, E., Ji,

Y., et al. (2019). Meta-analysis of genome-wide association

studies for body fat distribution in 694 649 individuals of eu-

ropean ancestry. Hum. Mol. Genet. 28, 166–174.

94. Akiyama, M., Okada, Y., Kanai, M., Takahashi, A., Momo-

zawa, Y., Ikeda, M., Iwata, N., Ikegawa, S., Hirata, M., Mat-

suda, K., et al. (2017). Genome-wide association study iden-

tifies 112 new loci for body mass index in the japanese

population. Nat. Genet. 49, 1458–1467.

95. Hoffmann,T.J.,Choquet,H.,Yin, J.,Banda,Y.,Kvale,M.N.,Gly-

mour, M., Schaefer, C., Risch, N., and Jorgenson, E. (2018). A

large multiethnic genome-wide association study of adult

body mass index identifies novel loci. Genetics 210, 499–515.

96. Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M.,

Koshiba, S., Narita, A., Konuma, T., Yamamoto, K., Akiyama,
The American Jour
M., et al. (2021). A cross-populationatlas of genetic associations

for 220 human phenotypes. Nat. Genet. 53, 1415–1424.

97. Li, N., and Stephens, M. (2003). Modeling Linkage Disequi-

librium and Identifying Recombination Hotspots Using

Single-Nucleotide Polymorphism Data. Genetics 165,

2213–2233.

98. Albrechtsen, A., Sand Korneliussen, T., Moltke, I., van Over-

seem Hansen, T., Nielsen, F.C., and Nielsen, R. (2009). Relat-

edness mapping and tracts of relatedness for genome-wide

data in the presence of linkage disequilibrium. Genet. Epide-

miol. 33, 266–274.

99. Browning, S.R., and Thompson, E.A. (2012). Detecting Rare

Variant Associations by Identity-by-Descent Mapping in

Case-Control Studies. Genetics 190, 1521–1531.

100. Simons, Y.B., Bullaughey, K., Hudson, R.R., and Sella, G.

(2018). A population genetic interpretation of GWAS find-

ings for human quantitative traits. PLoS Biol. 16, e2002985.

101. Zeng, J., de Vlaming, R., Wu, Y., Robinson, M.R., Lloyd-Jones,

L.R., Yengo, L., Yap, C.X., Xue, A., Sidorenko, J., McRae, A.F.,

et al. (2018). Signatures of negative selection in the genetic ar-

chitecture of human complex traits. Nat. Genet. 50, 746–753.

102. Simons, Y.B., Mostafavi, H., Smith, C.J., Pritchard, J.K., and

Sella, G. (2022). Simple scaling laws control the genetic ar-

chitectures of human complex traits. Preprint at bioRxiv.

103. Spence, J.P., Sinnott-Armstrong, N., Assimes, T.L., and Pritch-

ard, J.K. (2022). A flexiblemodeling and inference framework

for estimating variant effect sizes from gwas summary statis-

tics. Preprint at bioRxiv.

104. Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic

modeling with bayesian sparse linear mixed models. PLoS

Genet. 9, 10032644–e1003314.

105. Weissbrod, O., Geiger, D., and Rosset, S. (2016). Multikernel

linear mixed models for complex phenotype prediction.

Genome Res. 26, 969–979.

106. Hivert, V., Sidorenko, J., Rohart, F., Goddard, M.E., Yang, J.,

Wray, N.R., Yengo, L., and Visscher, P.M. (2021). Estimation

of non-additive genetic variance in human complex traits

from a large sample of unrelated individuals. Am. J. Hum.

Genet. 108. 962–798.

107. Brandt, D.Y., Wei, X., Deng, Y., Vaughn, A.H., and Nielsen, R.

(2022). Evaluation of Methods for Estimating Coalescence

Times Using Ancestral Recombination Graphs. Genetics 221.

108. Runcie, D.E., and Crawford, L. (2019). Fast and flexible linear

mixed models for genome-wide genetics. PLoS Genet. 15,

10079788–e1008024.
nal of Human Genetics 110, 2077–2091, December 7, 2023 2091

http://refhub.elsevier.com/S0002-9297(23)00395-6/sref86
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref86
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref87
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref87
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref87
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref88
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref88
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref88
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref88
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref88
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref89
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref89
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref89
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref89
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref89
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref90
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref90
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref90
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref90
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref90
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref91
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref91
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref91
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref91
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref91
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref92
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref92
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref92
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref92
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref93
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref93
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref93
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref93
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref93
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref94
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref94
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref94
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref94
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref94
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref95
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref95
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref95
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref95
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref96
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref96
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref96
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref96
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref97
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref97
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref97
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref97
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref98
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref98
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref98
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref98
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref98
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref99
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref99
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref99
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref100
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref100
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref100
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref101
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref101
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref101
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref101
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref102
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref102
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref102
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref103
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref103
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref103
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref103
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref104
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref104
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref104
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref105
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref105
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref105
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref106
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref106
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref106
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref106
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref106
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref107
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref107
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref107
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref108
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref108
http://refhub.elsevier.com/S0002-9297(23)00395-6/sref108

	Tree-based QTL mapping with expected local genetic relatedness matrices
	Introduction
	Subjects and methods
	Characterizing local relatedness
	Local GRM
	Local eGRM
	The variance-components model
	Simulating genealogy and genotypes
	Simulating ARGs for one population
	Estimating ARGs with relate

	Simulating phenotypes
	Choosing the causal variants
	Choosing the effect sizes

	QTL testing
	Local REML
	GWAS
	ACAT-V

	Correcting for population stratification
	Simulating phenotypes affected by genetic confounding
	Correcting for population stratification

	Estimating statistical power
	Null simulations
	Power as a function of genetic architecture

	Application to real data
	Transforming the phenotypes
	Estimating the ARG with relate
	Inferring the LOCO eGRM to correct for population structure
	Determining the significance cutoffs
	Testing for QTLs


	Results
	Calibrating the type I error rate by simulation
	Local eGRM exhibits power advantages in cases of allelic heterogeneity
	Correcting for population stratification
	Applying local eGRM to known associations with BMI in the understudied Native Hawaiian cohort of the MEC

	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	References


