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Genetic and phenotypic variation among populations is one of the fundamental subjects of evolutionary genetics. One question that arises 
often in data on natural populations is whether differentiation among populations on a particular trait might be caused in part by natural 
selection. For the past several decades, researchers have used QST–FST approaches to compare the amount of trait differentiation among 
populations on one or more traits (measured by the statistic QST ) with differentiation on genome-wide genetic variants (measured by FST ). 
Theory says that under neutrality, FST and QST should be approximately equal in expectation, so QST values much larger than FST are con
sistent with local adaptation driving subpopulations’ trait values apart, and QST values much smaller than FST are consistent with stabilizing 
selection on similar optima. At the same time, investigators have differed in their definitions of genome-wide FST (such as “ratio of averages” 
vs. “average of ratios” versions of FST ) and in their definitions of the variance components in QST . Here, we show that these details matter. 
Different versions of FST and QST have different interpretations in terms of coalescence time, and comparing incompatible statistics can lead 
to elevated type I error rates, with some choices leading to type I error rates near one when the nominal rate is 5%. We conduct simulations 
under varying genetic architectures and forms of population structure and show how they affect the distribution of QST . When many loci 
influence the trait, our simulations support procedures grounded in a coalescent-based framework for neutral phenotypic differentiation.
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Introduction
Natural selection is a fundamental evolutionary process, shaping 
genetic variation and the fit of organisms to their environments. 
Evolutionary biologists have developed a variety of methods for 
identifying natural selection operating in nature or the laboratory 
(Kawecki et al. 2012; Vitti et al. 2013; Stern and Nielsen 2019). In or
der to understand the action of natural selection, it is crucial to 
identify cases in which we are confident that selection has 
occurred.

Going back to the work of Wright (1949), evolutionary biologists 
have often studied natural selection by considering phenotypic 
differentiation among related populations. If mean levels of a 
phenotype vary greatly among subpopulations, more than base
line levels of genetic differentiation would lead us to expect, 
then one explanation is that natural selection has driven the sub
populations to different values of the trait. In the last 30 years, 
QST–FST comparisons have been a major framework for testing hy
potheses about natural selection on phenotypes (Whitlock 1999; 
Edge and Rosenberg 2015; Koch 2019).

To perform such a comparison on a single phenotype, one esti
mates the degree of genetic differentiation among a set of popula
tions of interest via Wright’s fixation index FST, using data from 
putatively neutral genetic markers in individuals ultimately 
drawn from a set of populations of interest. One then compares 
this measurement of genetic differentiation to the degree of 
phenotypic differentiation observed. To rule out environmental 

explanations for trait differentiation, it is important that pheno
types be measured in individuals raised in a common garden ra
ther than sampled directly from natural populations (Brommer 
2011; Edelaar et al. 2011; Harpak and Przeworski 2021; Schraiber 
and Edge 2024). As a measure of phenotypic differentiation, one 
estimates QST (Prout and Barker 1993; Spitze 1993), a quantity de
signed to be equal in expectation to FST if the phenotype has evolved 
neutrally. [In fact, the expectation of QST is often slightly less than FST 

(Miller et al. 2008; Edge and Rosenberg 2015; Koch 2019).] QST values 
much larger than FST are consistent with divergent selection driving 
populations’ phenotypic values apart, perhaps as a result of local 
adaptation. On the other hand, QST values much smaller than FST 

are consistent with stabilizing selection on a shared optimum or 
on very similar optima. (We focus here on type I errors in tests of 
the local adaptation hypothesis.) QST–FST comparisons have been 
widely used to identify selection on phenotypic variation (Merilä 
and Crnokrak 2001; Whitlock 2008; Le Corre and Kremer 2012).

Notwithstanding their wide use, QST–FST comparisons have also 
faced statistical and conceptual scrutiny (Hendry 2002; Whitlock 
2008; Edelaar et al. 2011). One issue with QST–FST comparisons is 
ambiguity—there are multiple versions of both QST and FST, as 
well as at least two ways of averaging FST across loci. 
Additionally, there are multiple proposed approaches to develop
ing a null distribution for QST (see Theory and Methods section.) 
Investigators who use QST–FST comparisons implicitly make 
choices about these dimensions, in addition to choices about ex
perimental design and sampling variation (Whitlock 2008).
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Here, we study the ways in which these statistical choices af
fect the results of QST–FST comparisons. We simulate neutral trait 
variation under a variety of models of population structure and 
genetic architecture, and we use multiple methods for comparing 
FST and QST. Our results broadly support interpretation of QST–FST 

comparisons in terms of the neutral coalescent, as coalescent- 
based predictions about which pairings of QST estimator and 
null distribution will lead to calibrated tests are correct in every 
case we examine. Encouragingly, the methods that seem to be 
used most often in the literature are often broadly supported, 
and our framework explains why these frequent choices often 
work well. We summarize our key findings in Box 1.

Theory and methods
Theory
When using QST–FST comparisons to study trait differentiation, in
vestigators need to make a number of choices. First, one needs to 
choose a version of QST. Next, one needs to choose a version of FST, 
and potentially a way of averaging FST values across loci. Finally, 
one needs to choose a method for generating a null distribution 
of QST. We discuss each of these decisions in turn, pointing out 
how the available choices can be interpreted in terms of the co
alescent process. For a summary of our notation, see Table 1.

Preliminaries
We consider a standard quantitative-genetic setup as follows. For 
an individual, the random phenotype Y is the sum of a genetic and 
environmental component, i.e.

Y = G + E. (1) 

G is a random variable representing the genetic component of the 
phenotype for an individual drawn at random from the metapo
pulation (i.e. the collection of all subpopulations under consider
ation). We can conceive of G as resulting from a two-step process: 
first, a subpopulation is selected at random—we refer to a random 
variable encoding subpopulation membership as M below—and 
then an individual is drawn at random from that subpopulation. 
If we think of G in this way, it is natural to decompose the variance 

of G into two components, one resulting from the random selec
tion of a subpopulation, and a second from the selection of an in
dividual from that population, which we write as

Var(G) = VB + VW. (2) 

Slightly more formally, this is a variance decomposition that 
arises from the law of total variance, in which the conditioning 
is on the variable encoding subpopulation membership, M. The 
law of total variance gives

Var(G) = VarM(E[G |M]) + EM(Var[G |M]) = VB + VW. (3) 

In this notation, the between-group genetic variance is 
VB = VarM(E[G |M]), and the within-group genetic variance is 
VW = EM(Var[G |M]). In practice, there are multiple designs for es
timating VB and VW from common-garden experiments. Here, 
we estimate VB as a variance of subpopulation means of G, and 
we estimate VW as the average of the within-subpopulation genet
ic variances. In all of our simulations, all subpopulations are re
presented by samples of equal size, but if the sizes were to vary, 
then VW could be estimated via a weighted average, and the esti
mator of VB would also need to account for unequal sampling.

Many of the terms in which we are interested are variances, and 
we consider estimators of these variances that either do or do not 
use Bessel’s correction (Upton and Cook 2014), the division of the 

Table 1. Summary of notation

Symbol Meaning

QST An index of differentiation among subpopulations on a 
quantitative trait

G An individual’s genetic value for a trait
M A variable encoding subpopulation membership
VB The phenotype’s genetic variance among (between) 

subpopulations
VW The phenotype’s genetic variance within subpopulations
d The number of subpopulations (demes) in a 

metapopulation
ṼB An estimator of VB that does not use Bessel’s correction
V̂B An estimator of VB that uses Bessel’s correction
V̂W An estimator of VW that uses Bessel’s correction
QPBS

ST The QST proposed by Prout and Barker and by Spitze

QRB
ST The QST proposed by Relethford and Blangero

t The mean coalescence time of two alleles chosen 
uniformly at random from the metapopulation

tB The mean coalescence time of two random alleles from 
two different subpopulations

tW The mean coalescence time of two random alleles within 
the same subpopulation

σ2 The genetic variance due to mutation per zygote per 
generation in all subpopulations

FNei
ST An FST proposed by Nei, equivalent to Nei’s GST

FWC
ST The FST proposed by Cockerham, estimated by the method 

of Weir & Cockerham
pj The allele frequency in subpopulation j at a biallelic locus
p̅ The average allele frequency across subpopulations
HT The expected heterozygosity under random mating 

computed using the allele frequencies in the full sample
HS The average of the within-subpopulation expected 

heterozygosities
􏽦FST A genome-wide FST estimator via the “average-of-ratios” 

approach
􏽣FST A genome-wide FST estimator via the “ratio-of-averages” 

approach
FST(i) An estimated FST at the ith biallelic locus
T(i) The numerator of the FST estimate at locus i
B(i) The denominator of the FST estimate at locus i
k The number of loci used to calculate a genome-wide FST

Box 1 Key findings

• What forms of FST and QST should be used? Versions of FST and 
QST that make the same choice about whether to use 
Bessel’s correction in estimating among-group variance 
should be used. (As showed by Weaver 2016, such pairs 
have the same interpretation in terms of coalescence 
time.) Compatibility is more important than which choice 
is made.

• How should FST be averaged across the genome? For methods 
that require an average FST, a “ratio of averages” approach 
is generally superior. So-called “average of ratios” FST can 
be too small and produce higher-than-desired 
false-positive rates.

• How should a null distribution for QST be generated? The 
Lewontin–Krakauer approach often works well, but it can 
fail with many demes that have strong spatial structure. 
Using the distribution of single-locus FST estimates can 
also be effective, but for traits that are polygenic, only 
common variants should be used—rarer variants produce 
small FST estimates that can lead to high false-positive 
rates. If it is possible to estimate the necessary average 
within-and-among-population coalescence times well, 
then Koch’s 2019 appears well calibrated for use with QRB

ST .
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sum of squares by the number of observations minus one rather 
than the number of observations. (Bessel’s correction renders the 
sample variance estimator unbiased, provided that the distribution 
from which independent, identically distributed observations are 
drawn has a defined variance.) We use a tilde to indicate a variance 
estimator that does not use Bessel’s correction and a hat to indicate 
a variance estimator that uses Bessel’s correction. (We also use hats 
and tildes to distinguish other pairs of estimators.) For example, 
with samples of equal size from each of d subpopulations, we use 
ṼB to indicate an estimator of VB that includes a division by d, and 
V̂B to indicate an estimator that includes a division by d − 1. That 
is, if the mean value of G in the jth subpopulation is G̅j, and the grand- 
mean value of G is G̅, and all subpopulations are of equal size, then

ṼB =
􏽘

j

(G̅j − G̅)2
/d (4) 

and

V̂B =
􏽘

j

(G̅j − G̅)2
/(d − 1). (5) 

In a common-garden setting, the variance of the environmental con
tribution is typically assumed to be a constant that does not depend 
on group membership. We do not consider the environmental con
tribution E below, focusing instead on statistical issues that arise in
dependently of the problem of separating G and E.

Estimators of QST

QST is an index of differentiation among subpopulations on a 
quantitative trait. For diploids and a single phenotype, it is equal 
to (Whitlock 2008)

QST =
VB

2VW + VB
. (6) 

For general ploidy ℓ, the 2 in equation (6) is replaced by ℓ. This 
term is necessary to equilibrate QST with FST (see below), which 
can be thought of as a variance proportion for a random draw of 
a single haploid allele, (Edge and Rosenberg 2015).

In general, the genetic variances VB and VW are unknown and 
must be estimated. There are several experimental designs for es
timating VB and VW involving common gardens. For simplicity, we 
imagine that individual genetic values for the phenotype are 
known—or equivalently, that the phenotype is not susceptible 
to any environmental influence—thus abstracting away from 
these design considerations. Instead, we focus on two forms of 
QST estimator proposed independently by three groups in the early 
1990s. One estimator was developed independently by Spitze 
(1993) and by Prout and Barker (1993) and is commonly used in 
evolutionary biology. The other was proposed by Relethford and 
Blangero (1990) and Relethford (1994) and is more commonly 
used by evolutionary anthropologists. Following Weaver (2016), 
we call the version proposed by Prout and Barker and by Spitze 
QPBS

ST , and the version proposed by Relethford and Blangero QRB
ST .

QPBS
ST and QRB

ST differ according to whether they apply Bessel’s 
correction to the estimated among-subpopulation genetic vari
ance. That is,

QRB
ST =

ṼB

2V̂W + ṼB
=

˜VarM(E[G |M])

2EM( ˆVar[G |M]) + ˜VarM(E[G |M])
(7) 

QPBS
ST =

V̂B

2V̂W + V̂B
=

ˆVarM(E[G |M])

2EM( ˆVar[G |M]) + ˆVarM(E[G |M])
, (8) 

where, as in equations (1) and (3), G indicates individual-level gen
etic value for the trait, M is a variable representing subpopulation 

membership. Further, as in equations (4)–(5), Ṽ represents an esti

mator of variance that does not use Bessel’s correction, and, V̂ sig
nifies a variance estimator that uses Bessel’s correction. The 

difference between the estimators is that QPBS
ST uses Bessel’s correc

tion when estimating VB, dividing by d − 1, and QRB
ST does not, divid

ing instead by d. Thus, the estimators are very similar when the 
number of demes d is large, but will be quite different for very small 
numbers of demes. Whitlock (2008) mentions this distinction, writ
ing “It is also essential that the methods used to calculate FST and 
QST both calculate variance among groups in the same way, e.g. 
by dividing by the number of populations minus one.” But in general 
it has received little attention, perhaps in part because it is a subtle 

difference if d is large, and in part because QPBS
ST and QRB

ST are used by 

different communities of researchers.
Weaver (2016) showed that QPBS

ST and QRB
ST have different inter

pretations in terms of coalescence times; we follow his exposition 
in the remainder of this subsection. Let t be the mean coalescence 
time of two alleles chosen uniformly at random from the entire 
metapopulation, tB the mean coalescence time of two random al
leles from two different subpopulations, and tW the mean coales
cence time of two random alleles within the same subpopulation. 
Let σ2 be the genetic variance due to mutation per zygote per gen
eration in all subpopulations. Weaver showed that

E(V̂W) ≈ tWσ2 (9) 

E(V̂W) +
1
2

E(V̂B) ≈ tBσ2 (10) 

E(V̂W) +
d − 1

2d
E(V̂B) ≈ tσ2. (11) 

Since ˜VarM(E[G |M]) = (d − 1) ˆVarM(E[G |M])/d, equation (11) can be 
written as

E(V̂W) +
1
2

E(ṼB) ≈ tσ2. (12) 

Plugging equations (9) and (12) into the ratio of the expectations of 
the numerator and denominator of equation (7) gives

E(ṼB)

E(2V̂W + ṼB)
=

1
2

E(ṼB)

E(V̂W) +
1
2

E(ṼB)

=
E(V̂W) +

1
2

E(ṼB) − E(V̂W)

E(V̂W) +
1
2

E(ṼB)

≈
t − tW

t

(13) 

which implies

E(QRB
ST ) ≈

t − tW

t
.

Similarly, combining equations (9)–(10) with equation (8) gives

E(QPBS
ST ) ≈

tB − tW

tB
.

(In both of these equations, the expression on the right is a ratio of 
the approximate expectations of the numerator and denominator 
of the QST estimator, which is not generally equal to the expect
ation of QST, but can be seen as an approximation motivated by 
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a first-order Taylor expansion around the expectations of the nu
merator and denominator. The adequacy of this common ap
proximation depends on the magnitude of the higher-order 
terms omitted; see Edge and Coop 2019, Appendix C.)

With large numbers of equally sized demes, t ≈ tB, because 
most random pairs of alleles are from distinct subpopulations. 
However, with small numbers of demes, it is reasonable to expect 
that QRB

ST and QPBS
ST may be well calibrated only when paired with FST 

estimators that estimate the same functions of coalescence times 
they do under neutrality.

FST conceptualizations
Few quantities of interest in evolutionary genetics have inspired 
more alternative definitions and interpretations than FST (Wright 
1949; Nei 1973; Weir and Cockerham 1984; Slatkin 1991; 
Holsinger and Weir 2009; Bhatia et al. 2013; Ochoa and Storey 
2021; Goudet and Weir 2023). FST has been variously interpreted 
as a measure of population differentiation, a “genetic distance” 
(but see Arbisser and Rosenberg 2020), an index of the strength 
of the Wahlund effect on heterozygosity, a correlation of alleles 
drawn from the same population, an inbreeding coefficient, an es
timator of split time or migration rate among populations, an in
dicator of selection at a locus, a proportion of variance in an 
indicator variable for allelic type, and a measure of progress to
ward fixation on different alleles in multiple subpopulations. 
Here, we do not attempt to encompass the full diversity of ap
proaches to FST, instead focusing on two versions of FST that lead 
to different interpretations in terms of either variance proportions 
and coalescence time, and on two methods for averaging FST 

across loci to form a genome-average FST.
In this section, we focus on Nei’s GST (Nei 1973), which we call 

FNei
ST , and on Cockerham’s (1969; 1973) formulation of FST, which 

he called Θ and is estimated by the method of Weir and 
Cockerham (1984), and which we call FWC

ST . We do not consider des
cendants of the population-specific FST framework developed by 
Weir and Hill (2002).

Wright defined FST in terms of the correlation of a pair of 
gametes drawn at random from the same subpopulation compared 
with draws of gametes from the “total” population. The 
fundamental difference between the approaches of Nei and 
Cockerham can be understood as stemming from different concep
tions of the “total” population. Nei’s definition emerges from an un
derstanding in which the “total” population is the complete sample, 
that is, the members of all subpopulations sampled. In contrast, 
Cockerham’s formulation treats the “total” population as an ances
tral population from which all the contemporary samples descend. 
Importantly, in Cockerham’s formulation, we imagine the sampled 
populations as instances of an evolutionary process of descent from 
the same ancestor, and FST is viewed as a parameter describing that 
process. This is in contrast to Nei’s formulation, which does not ex
plicitly posit an ancestral population or an evolutionary process, but 
instead describes the structure of genetic diversity in a sample. This 
difference is sometimes expressed by saying that the tradition of Nei 
views FST as a statistic, whereas the tradition of Cockerham views FST 

as a parameter (Weir and Cockerham 1984).
For a set of subpopulations descended from the same ancestral 

population, Cockerham defined FST as a correlation of gametes 
drawn at random from the same subpopulation compared 
with pairs of gametes drawn from the population ancestral 
to the set of subpopulations. Assuming that all subpopulation al
lele frequencies have drifted independently and by the same 
amount since their shared ancestor leads to the estimator of 
Weir and Cockerham (1984). If there are equal samples of n 

chromosomes from each of d subpopulations, then the Weir & 
Cockerham estimator for the ith biallelic locus simplifies to

FWC
ST(i) =

1
d − 1

􏽐
j (pj − p̅)2 −

1
d(n − 1)

􏽐
i pj(1 − pj)

1
d − 1

􏽐
j (pj − p̅)2 +

1
d
􏽐

j pj(1 − pj)

≈

1
d − 1

􏽐
j (pj − p̅)2

1
d − 1

􏽐
j (pj − p̅)2 +

1
d
􏽐

j pj(1 − pj)
,

(14) 

where pj is the allele frequency in subpopulation j at the ith bial

lelic locus, p̅ is the average allele frequency across subpopula
tions, and the approximation holds if the sample size per 
subpopulation (i.e. n) is large (n ≫ 1). (In practice, pj and p̅ must 

be estimated.)
In contrast, Nei’s version of FST, which he labeled GST, is 

defined as

FNei
ST(i) =

HT − HS

HT
, (15) 

where HT is Nei’s “gene diversity” (i.e. the expected heterozygosity 
under random mating) computed using the allele frequencies in 
the full sample, and HS is the average gene diversity within subpo
pulations. Thus, at the ith biallelic locus, and with equal sample 
sizes per subpopulation, Nei’s FST can be estimated as

FNei
ST(i) =

2 p̅(1 − p̅) −
1
d
􏽐

j 2pj(1 − pj)

2 p̅(1 − p̅)

=

1
d
􏽐

j (pj − p̅)2

1
d
􏽐

j (pj − p̅)2 +
1
d
􏽐

j pj(1 − pj)
,

(16) 

where the second equality comes from the fact that p̅(1 − p̅) = 
􏽐

(pj − p̅)2
/d +

􏽐
pj(1 − pj)/d (Ehm 1991). Potentially adding to the 

confusion over FST, Nei (1986) suggested a second form of FST, 
which he labeled F′ST, in which the numerator of equation (16) is 

multiplied by d/(d − 1), rendering the numerator equal to that of 
the right side of equation (14). Bhatia and colleagues (2013) refer 
to this alternative F′ST as Nei’s FST, whereas our references to 

Nei’s FST are to his original formulation from 1973, and we do 
not consider F′ST further.

Comparing equations (14) and (16) reveals that Nei’s FST estima
tor would be approximately equal to Weir & Cockerham’s estima
tor (assuming large and equal sample sizes per subpopulation) if 
the terms corresponding to among-subpopulation variation (i.e. 
the numerator and the first term of the denominator) were divided 
by d − 1 instead of d. Thus, they will be approximately equal for 
large numbers of subpopulations. This view also reveals a corres
pondence between these two forms of FST and the forms of QST 

considered above. Specifically, both Weir & Cockerham’s FWC
ST 

and the Prout–Barker–Spitze QPBS
ST apply Bessel’s correction to 

the estimator of variance among groups [as noted in passing by 
Whitlock (2008)], whereas Nei’s FNei

ST and Relethford & Blangero’s 
QRB

ST do not apply Bessel’s correction.
The correspondence between FWC

ST and QPBS
ST , on one hand, and 

FNei
ST and QRB

ST is also apparent when considering their interpret
ation in terms of average coalescent times. As pointed out by 
Slatkin (1991), for low mutation rates, Nei’s FNei

ST , expressed in 
terms of probabilities of identity, has a low-mutation-rate limit 
of (t − tW)/t, where t is the average pairwise coalescence time for 
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gametes drawn uniformly from the population at large, and tW is 
the average coalescence time for pairs of gametes drawn from the 
same subpopulation. This expression in terms of coalescence 
times exactly matches that for QRB

ST above. Similarly, Slatkin 
(1993) pointed out that the analogous limit for Weir & 
Cockerham’s FWC

ST is (tB − tW)/tB, where tB is the average coales
cence times for pairs of gametes drawn from different subpopula
tions. This expression matches that for QPBS

ST , a correspondence 
pointed out by Weaver (2016).

Thus, theoretical considerations, whether viewed from the per
spective of variance partitioning or coalescence times, lead us to 
expect that Relethford and Blangero’s QRB

ST is comparable with 
Nei’s FNei

ST and that the Prout–Barker–Spitze QPBS
ST is comparable 

with Weir & Cockerham’s FWC
ST . Because the most general motiva

tions for comparison of QST and FST are based on coalescent argu
ments (Whitlock 1999; Koch 2019), the coalescent argument takes 
special importance. Because both sets of estimators become more 
similar for large numbers of subpopulations, we might also pre
dict that the differences matter most for small d.

Averaging FST estimators
Given a choice of a single-site estimator of FST, there are two major 
strategies for estimating genome-wide FST. Perhaps the most obvi
ous approach is simply to take the average of the FST values at 
each locus. Because FST is a ratio, this is sometimes called the 
“average-of-ratios” approach (shortened to “AoR” in Figure le
gends), and can be written as

􏽦FST =
1
k

􏽘k

i=1

FST(i) =
1
k

􏽘k

i=1

T(i)
B(i)

, (17) 

where T(i) is the numerator and B(i) is the denominator of the FST 

estimate at locus i, and k is the number of loci. The other major ap
proach is to sum separately the numerators and denominators of 
the FST estimates at all loci and then report their ratio as the final 
estimate. This is sometimes called a “ratio of averages” approach 
(shortened to “RoA” in Figure legends) and can be written as

􏽣FST =
􏽐k

i=1 T(i)
􏽐k

i=1 B(i)
. (18) 

Whereas the average-of-ratios estimator is an unweighted aver
age of the single-locus FST estimates, the ratio-of-averages estima
tor is a weighted average, where the weights are the denominators 
of the single-locus FST estimates, which themselves are generally 
estimates of the total variation at the locus. That is, the ratio-of- 
averages estimator can be written as

􏽣FST =
􏽐k

i=1 T(i)
􏽐k

i=1 B(i)
=
􏽐k

i=1 FST(i)B(i)
􏽐k

i=1 B(i)
. (19) 

Empirically, when loci with low minor allele frequency are included 
in estimates of FST, the average-of-ratios estimator tends to produce 
smaller estimates than the ratio-of-averages estimator (Bhatia et al. 
2013). This observation makes sense—ratio-of-averages FST estima
tors down-weight loci with low minor allele frequencies, since they 
also have low total heterozygosity, and FST at loci with low minor al
lele frequencies is mathematically constrained to be small 
(Jakobsson et al. 2013; Alcala and Rosenberg 2017).

As ratio estimators, both the ratio-of-averages and 
average-of-ratios approach may produce biased estimates, since 

the expectation of a ratio is not generally equal to the ratio of 
the expectations of its numerator and denominator. Weir and 
Cockerham (1984) recommended a ratio-of-averages approach 
to averaging FST. More recently, Guerra and Nielsen (2022) studied 
sequence-based estimators of FST. Their results imply that, with 
two subpopulations, the average-of-ratios approach will typically 
be biased downward as an estimator of FST, interpreted as a func
tion of coalescence times. Using a downwardly biased genome- 
wide FST estimator could result in an excess of QST tests that pro
duce spurious evidence of local phenotypic adaptation.

Proposed null distributions for QST

The reason that the estimator of FST matters for QST − FST compar
isons is that we wish to form a null distribution that describes 
the behavior of QST under neutrality. We consider three broad 
approaches that have been proposed in the literature. First, we 
consider the Lewontin–Krakauer distribution, a re-scaled χ2 distri
bution parameterized to have an expectation equal to a genome- 
wide estimate of FST (Lewontin and Krakauer 1973). We consider 
versions of the Lewontin–Krakauer distribution with expectations 
equal to FST estimates coming from either the Nei or Weir– 
Cockerham estimators, and from genome-wide averages of FST 

based on either the ratio-of-averages or average-of-ratios ap
proach. The Lewontin–Krakauer distribution was derived under 
the assumption of a star-like population tree (see Fig. 1b). This 
suggests that it may work poorly for demographic models with 
spatial structure or other departures from starlike demography, 
although it has also been suggested to be fairly robust to such de
viations in some contexts (Beaumont 2005).

The Lewontin–Krakauer distribution was developed as an ap
proximation to the distribution of single-locus FST values. Thus, 
an alternative approach is to use the realized distribution of 
single-locus FST values as a null distribution for QST. This approach 
is well justified for single-locus traits and has been shown to per
form well with simulated traits governed by a small number of loci 
(Whitlock 2008). We consider the distribution of single-locus FST 

for all loci or for common variants only (see below).
Finally, we tested an approach recently recommended by Koch 

(2019). Koch’s method involves identifying the covariance matrix 
expected among subpopulations evolving neutrally for the genetic 
component of a quantitative trait, then simulating multivariate 
normal random variables with that covariance matrix and com
puting QST values from them to form a null distribution of QST. 
Given any pair of subpopulations, their covariance is computed 
on the basis of mean pairwise coalescent times under neutrality 
within and between the subpopulations (see equation 10 in Koch 
2019.) As we discuss below, Koch’s expressions are consistent 
with the Relethford & Blangero version of QST.

Simulation methods
We sought to simulate neutral genetic variation with many 
subpopulations under a variety of demographic models. Diffusion- 
based approaches to compute the approximate joint site-frequency 
spectrum (SFS) (Gutenkunst et al. 2009; Jouganous et al. 2017) are 
limited to fewer demes than we require. We thus used a coalescent 
approach to generate approximate joint site-frequency spectra 
(Nielsen 2000; Excoffier et al. 2013). With large numbers of demes, 
the joint SFS is high dimensional and has too many entries to esti
mate the probability of rare allele-frequency configurations accur
ately by simulation. Nonetheless, the approach allows us to draw 
genetic variants with allele frequencies that are consistent with 
the demographic models we study. A schematic description of 
our protocol is shown in Fig. 1a.
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Fig. 1. Schematic figure of simulations and demographic models. a) For each demographic model, we simulated independent coalescent trees and used 
them to compute an approximate joint site-frequency spectrum. We then generated random genotypes from these spectra. Genotypes were used to 
compute various FST estimates at each locus and genome-wide, as well as to produce random phenotypes (and resulting QST estimates) in combination 
with simulated effect sizes. b) Demographic models included three scenarios involving splits among subpopulations (star-like, balanced, and graded/ 
caterpillar) and two scenarios involving migration among subpopulations (island and circular stepping-stone).
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Joint site-frequency spectrum approximation
We ran simulations to generate independent coalescent trees 
obeying each of the demographic models we studied and approxi
mated the joint site-frequency spectrum on the basis of tree 
branch lengths. This procedure has been used previously 
(Nielsen 2000; Excoffier et al. 2013). More formally, we estimated 
the joint site-frequency spectrum entry corresponding to the ex
istence of s = (s1, s2, . . . , sd) copies of an allele in demes 
1, 2, . . . , d as:

p̂s =
􏽐R

r=1
􏽐

k bkrs
􏽐R

r=1 Tr
(20) 

where bkrs represents the length of the kth branch in the rth 

simulated tree that is compatible with joint SFS entry s. 
That is, bkrs is the length of a branch that has exactly s1 descen
dants in subpopulation 1, s2 descendants in subpopulation 2, 
and so on. Tr is the total branch length of the rth simulated tree.

We used msprime (Baumdicker et al. 2022) to simulate 5,000 in
dependent coalescent trees for each demographic setting studied. 
We did not apply mutations to the simulated trees, instead simu
lating mutations later via sampling from the estimated joint SFS. 
The branch lengths of every tree were processed by a custom 
python (version 3.9.9) script to allow subsequent computation 
of equation (20).

Demographic models
Broadly, we examined two types of demographic models 
(Fig. 1b)—those in which differentiation among subpopulations 
occurs because subpopulations split from each other in the recent 
past and do not subsequently exchange migrants (“split models”) 
and those in which differentiation among long-separated subpo
pulations reaches an equilibrium value because of constant ex
change of migrants (“migration models”).

We examined three kinds of topologies for split models: star- 
like, in which all subpopulations split from an ancestor at the 
same time in the past; balanced, i.e. a symmetric, bifurcating 
tree; and graded/caterpillar, a bifurcating tree in which every split 
produces one subpopulation that does not split again (except the 
most recent split, which produces two such subpopulations). In all 
split models, we set the effective population size to be the same in 
every branch of the population tree. Among these, the star-like 
topology is of note because it reflects the assumptions used in 
the derivation of the Lewontin–Krakauer distribution, as well as 
those invoked in deriving the Weir–Cockerham estimator of FST.

Among migration models, we examined an island model, in 
which migrants from a given island are equally likely to migrate 
to any other island, and a circular stepping-stone model, in which 
migrants from a given island can only migrate to one of its two im
mediate neighbors. The circular stepping-stone model induces 
spatial structure that departs strongly from the star-like as
sumptions used to derive the Lewontin–Krakauer distribution 
(Koch 2019).

We simulated each demographic scenario with 2, 4, 8, and 16 
subpopulations with 100 diploid individuals sampled per subpo
pulation respectively. Effective population size Ne per deme was 
set to 1,000 and demographic parameters (split time or migration 
rates) were adjusted to achieve a values of (t − tW)/t (which should 
approximate the expected value of FNei

ST ) of 0.02, 0.1, or 0.25 across 
unlinked loci. Theoretical FST calculations for each model and 
scenario are provided in Supplementary Text.

QST − FST comparisons
We compared the distribution of QST with several proposed null 
distributions. We simulated genotypes first—these genotypes 
served both to produce single-locus FST estimates and, once as
signed random effect sizes, to produce individual values of the 
genetic component of a quantitative trait. For each demographic 
history, we simulated 20,000 random loci according to the ap
proximate joint site-frequency spectrum. A genotype matrix 
was then produced by randomly pairing these alleles within sub
populations to form sampled individuals using a custom python 
script. We calculated FNei

ST(i) and FWC
ST(i) for each locus according to 

equations (14) and (16) using sample allele frequencies using R 
(version 4.1.0). (All subsequent processing, data analysis, and 
visualization was performed in R as well.) Then, we calculated ra
tio-of-averages and average-of-ratios estimates of genome-wide 
FNei

ST and ratio-of-averages estimates for genome-wide FWC
ST to use 

as input for parameterizing the Lewontin–Krakauer distribution.
We compared the proposed null distributions with QST distribu

tions of simulated phenotypes. We first generated effect size vec
tors with entries drawn from various distribution families. An 
effect size vector is a vector indicating a random subset of 
loci assigned with randomly drawn effect sizes. Effect sizes 
were drawn from Gaussian, Uniform, and Laplace distributions 
with expectation 0 and variance 1. We also tested effect sizes 
drawn from an “alpha model” with α = −1 (an allele-frequency- 
dependent Gaussian distribution in which the effect-size stand
ard deviation is inversely proportional to 

����������
p̅(1 − p̅)

􏽰
, where p̅ is 

the mean allele frequency across the metapopulation). We 
note that the alpha model is not a neutral model, and with a sin
gle population, α = −1 emerges when there is very strong stabiliz
ing selection on a single trait (Schraiber et al. 2024). Nonetheless, 
we simulated under the assumption that effect sizes are as
signed with respect to average allele frequency, but without re
spect to differences in frequency among subpopulations given 
the average frequency.

We simulated traits with 1, 10, 100, or 1,000 loci with non-zero 
effect sizes. Individual phenotypic values were generated by tak
ing the dot product of the effect-size vector with a vector of indi
vidual genotypes. We calculated QRB

ST and QPBS
ST according to 

equation 7 and 8 for each of 10,000 simulated traits. We measured 
type I error rates for comparisons against every proposed null dis
tribution of QST. A nominal threshold of α = 0.05 was used for as
sessing Type I error rate across all demographic scenarios.

Results
Ratio-of-averages FST approximates the 
theoretically expected functions of coalescence 
time
We simulated independent coalescent trees and used the ratio 
of branch lengths on the tree collection to approximate three 
joint allele frequency spectra per demographic model, with the 
value of (t − tW)/t (which corresponds to FNei

ST ) set to 0.02, 0.1, 
or 0.25. Supplementary Fig. 1 shows that across all models, 
ratio-of-averages estimators of FNei

ST applied to all loci accurately 
estimated (t − tW)/t. (Similarly, ratio-of-averages FWC

ST estimated 
(tB − tW)/tB accurately, and were therefore larger on average 
than (t − tW)/t, as expected.) In contrast, average-of-ratios estima
tors always gave smaller values on average. These results change 
somewhat when loci are selected either on the basis of being com
mon in one target subpopulation (Supplementary Fig. 2) or on 
average across the total population (Supplementary Fig. 3).
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Mean QST appears bounded from above by FST 
under neutrality if the chosen FST and QST 
correspond in terms of coalescence times
We investigated the behavior of QST estimates under various 
demographic scenarios. For each phenotype, we calculated QRB

ST 

and QPBS
ST with effect sizes drawn from several distribution fam

ilies, i.e. normal, uniform, and Laplace distributions. In these si
mulations across various types of effect sizes, QST estimates 
show similar patterns (Supplementary Fig. 4). Figure 2 shows re
sults when effect sizes are sampled from a normal distribution. 
Gray lines show (t − tW)/t, the function of coalescence times corre
sponding to FNei

ST . As expected, mean values of QRB
ST are bounded 

from above by (t − tW)/t, though for traits influenced by small 
numbers of loci, they are substantially lower than this upper 
bound, as observed previously (Edge and Rosenberg 2015). Mean 
values of QRB

ST were also smaller than (t − tW)/t for small numbers 
of demes.

Unlike QRB
ST , mean values of QPBS

ST were somewhat larger than 
(t − tW)/t, particularly for small numbers of demes. This is again ex
pected, as QPBS

ST applies Bessel’s correction to the among-population 
variance in the numerator, causing it to be substantially larger than 
QRB

ST for small numbers of demes. As shown in Supplementary Fig. 5, 

the mean value of QPBS
ST is not larger than (tB − tW)/tB, the function of 

coalescence times to which FWC
ST corresponds.

Single-locus FST distributions match QST 
distributions for monogenic traits
We next examined the distribution of QST compared with the dis
tribution of single-locus FST, considering all variable loci irre
spective of allele frequency. Figure 3 shows the distribution of 
single-locus FNei

ST values compared with QRB
ST values for simulated 

traits influenced by 1, 10, 100, or 1,000 unlinked loci under a 
star-like, eight-deme split model. Unsurprisingly, when the si
mulated phenotype is influenced by one genetic locus, the 
distributions match closely—in this case, the QST values are 
equivalent to single-locus FST values. However, when the num
ber of loci influencing the trait is larger, the distributions no 
longer match. Importantly, in these simulations, all loci are 
equally likely to contribute to the trait, meaning that most 
single-locus traits will be controlled by relatively low-frequency 
loci, and so will not vary much either between or within 
subpopulations. This scenario is perhaps not reflective of most 
empirical studies, in which traits are likely to be chosen for 
study in part because they display substantial genetic variance. 

Fig. 2. The behavior of mean QST estimates in selected demographic models. Effect sizes were randomly sampled from a Gaussian distribution with 
variance 1 to generate phenotypic values. Mean QST estimates were calculated across 1,000 simulated traits with (t − tW)/t (i.e. the function of coalescent 
times estimated by FNei

ST ) equal to 0.1. The curves in each panel show the behavior of a) QRB
ST in 2D, 4D, and 8D star-like split models, b) QPBS

ST in 2D, 4D, and 8D 
star-like split models, c) QRB

ST in 2D, 4D, and 8D island models, and d) QPBS
ST in 2D, 4D, and 8D island models.
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Supplementary Figs. 6–9 show similar results comparing FNei
ST and 

FWC
ST with QRB

ST and QPBS
ST .

The Lewontin–Krakauer null works well 
for polygenic traits without spatial structure 
if the coalescence interpretation matches
Next, we considered the Lewontin–Krakauer distribution as a null 
distribution for QST. The Lewontin–Krakauer distribution is a 
scaled χ2(d − 1) distribution, where the scaling ensures that the 
expectation of the Lewontin–Krakauer distribution is equal to 
a genome-wide FST. Thus, the performance of the Lewontin– 
Krakauer distribution depends on the type of genome-wide FST es
timator used to parameterize it.

Figure 4 shows the fit to QST values from simulated traits of the 
Lewontin–Krakauer distribution parameterized by either ratio-of- 
averages or average-of-ratios FST values. Parameterizing the 
Lewontin–Krakauer distribution with average-of-ratios estima
tors of global FST always leads to a poor fit to the distribution of 
QST. Because average-of-ratios estimators are biased downward 
as estimators of (t − tW)/t or (tB − tW)/tB, they lead to Lewontin– 
Krakauer distributions centered on low values of QST, and these 

null distributions therefore lead to many false positives 
(Supplementary Figs. 10–13 and Supplementary Table 2).

However, for polygenic traits, the Lewontin–Krakauer distribu
tion often fits the distribution of neutral QST values well, provided 
that it is parameterized by a ratio-of-averages FST estimate that 
matches the definition of QST used. Specifically, the Lewontin– 
Krakauer distribution fits the neutral distribution of QRB

ST when it 
is parameterized by a ratio-of-averages estimator of FNei

ST , and it 
matches QPBS

ST when it is parameterized by a ratio-of-averages es
timator of FWC

ST , under both the migration and split models 
(Supplementary Figs. 10–13). Both of these choices produce cali
brated or slightly conservative tests for local adaptation. 
However, if QPBS

ST is parameterized by FNei
ST , the test is anticonserva

tive, and if QRB
ST is parameterized by FWC

ST , the test is unnecessarily 
conservative (Supplementary Table 2). These differences become 
very small as the number of demes increases.

Lewontin–Krakauer null fails for spatially 
structured populations with many demes
The original argument for the Lewontin–Krakauer distribution as 
an approximate distribution for single-locus FST assumed a 

Fig. 3. Single-locus FST density curves vs. QST distributions across genetic architectures: eight-deme island models. We compared two null distributions 
(the single-locus FNei

ST and FWC
ST density curves, using all variable loci) with neutral QRB

ST distributions. Each QST distribution included 10,000 traits with 1, 10, 
100, or 1,000 causal loci. The panels show the results for an eight-deme island model. Effect sizes were randomly sampled from a Gaussian distribution 
with variance 1. The value of (t − tW)/t was 0.1.
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star-like population tree (Lewontin and Krakauer 1973). Recently, 
Koch (2019) noticed that the Lewontin–Krakauer distribution is a 
poor null distribution for QST values from populations with strong 
spatial structure. The results shown in Fig. 5 agree with those of 
Koch. In circular stepping-stone models with few demes, the 
Lewontin–Krakauer distribution is an acceptable approximation 
to the distribution of QST under neutrality, producing conservative 
P-values with four demes and only slightly anticonservative 
P-values with eight demes. However, when there are 16 demes, 
the Lewontin–Krakauer distribution is too symmetric and too 
strongly peaked at its mode, leading to type I error rates of ap
proximately 10% when the nominal rate is 5% for polygenic traits.

In contrast, the QST distribution proposed by Koch (2019), in which 
QST values are computed from simulated trait values drawn from a 
multivariate normal with covariance determined by mean coales
cence times within and between demes, was well calibrated for poly
genic traits regardless of number of demes and conservative for 
monogenic or oligogenic traits. Indeed, Supplementary Figs. 10–13
show that Koch’s procedure performs well in all the settings we ex
amined if QRB

ST is used. As written, with small numbers of demes, 
Koch’s procedure produces inflated type I error rates for QPBS

ST 

(Supplementary Table 2). A modified version of Koch’s procedure 
would likely produce calibrated tests of QPBS

ST , though we do not pur
sue this here. We caution that we used the true expected within- and 
between-deme coalescence times to calibrate Koch’s procedure, 
when in a realistic setting these times would need to be estimated.

Additionally, we tested a modification of the single-locus FST 

distribution strategy tested in Fig. 3, in which we used the distribu
tion of single-locus FST values, limiting only to common variants 
(those with a minor allele frequency of at least 0.05 averaged 
across the entire metapopulation). Doing so typically produces 
well-calibrated type I error rates that are very similar to those pro
duced by Koch’s method. Indeed, if allele-frequency changes 
among populations can be thought of as produced by drift well ap
proximated by a multivariate normal distribution (Cavalli-Sforza 
et al. 1964; Nicholson et al. 2002; Berg and Coop 2014), then we 
would expect single-locus FST to have the same distribution 
Koch proposed for QST. (See Supplementary Text Section S2 for 
more details on this claim.) In contrast, the Lewontin–Krakauer 
approach assumes all subpopulations are equally related and 
thus may not work well when the demographic history causes 
the actual covariance matrix to depart markedly from this form.

Fig. 4. Lewontin–Krakauer null vs. QST distributions across genetic architectures: eight-deme star-like split models. We compared the Lewontin–Krakauer 
distribution parameterized by either ratio-of-averages or average-of ratios estimates of genome-wide FNei

ST or FWC
ST to neutral distributions of QRB

ST . Each QST 

distribution included 10,000 traits with 1, 10, 100, or 1,000 causal loci. The panels show results for an eight-deme star-like split model. Effect sizes were 
randomly sampled from a Gaussian distribution with variance 1; the value of (t − tW)/t was 0.1.
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For rare variants, allele-frequency change due to drift is not well 
approximated by a normal distribution—one reason is that because 
allele frequencies cannot drift below zero, the distribution of pos
sible allele frequencies after drift is asymmetric. However, for suffi
ciently common variants and sufficiently short drift times, 
single-locus FST values might be expected to have a distribution simi
lar to Koch’s proposal for neutral QST. Supplementary Figs. 6–9 show 
that the distribution of FST values for common alleles typically per
forms well as a null distribution for QST, so long as QRB

ST values are 
compared with FNei

ST and QPBS
ST values are compared with FWC

ST .
For a summary of our findings in error rates in QST–FST compar

isons, see Fig. 6. Supplementary Figs. 14–15 and Supplementary 
Table 2 show type I error rate results in each demographic model 
with (t − tW)/t = 0.1, and Supplementary Fig. 16 shows results 
across different effect size distribution families.

Discussion
We examined the effect of various choices for computing QST and 
forming a null distribution on type I error rates in QST–FST compar
isons to detect local adaptation. In general, our results are all well 
explained if QST and FST are viewed in terms of coalescent theory. 
That is, QST–FST comparisons are well calibrated as tests of local 
adaptation if QST is compared with a null distribution that approx
imates the distribution of the version of QST chosen under a neu
tral coalescent process.

Although QST analyses typically proceed as if the distribution of 
QST does not depend on the number of loci that influence the trait, 
our simulations show that this is not quite true. Rather, the distri
bution of QST differs for traits influenced by very small numbers of 
loci, generally being lower variance, and tends to reach a limit as 
the number of loci becomes large. This behavior has been noticed 
previously (Edge and Rosenberg 2015; Koch 2019). In our simula
tions, polygenic traits lead to a higher-variance QST distribution 
than monogenic or oligogenic traits, so using a QST distribution ca
librated for polygenic traits as a null will be conservative in tests of 
local adaptation. If a given trait is known to be monogenic, then 
one might argue that using the distribution of single-locus FST va
lues is more appropriate, as suggested by Fig. 3. However, in prac
tice, we believe such a choice would often be inappropriate. Most 
monogenic traits that catch researchers’ interest for a QST vs. FST 

test are likely to do so because they display substantial genetic 
variance, either within or between demes. Such ascertainment 
of traits on the basis of their variance makes them unlike rare var
iants, which will be the plurality of mutations observed in a se
quencing study. Thus, if a trait is known to be monogenic, it 
might be more appropriate to conduct a test of local adaptation 
that conditions on its overall frequency.

We also find that whatever the method used, null distributions 
built from FNei

ST tend to work better when paired with QRB
ST , and null 

distributions built from FWC
ST work best when paired with QPBS

ST , par
ticularly when the number of demes is small. One way to under
stand this result is that neither FNei

ST or QRB
ST use Bessel’s correction 

Fig. 5. Multiple nulls vs. QST distributions across genetic architectures: four-deme, eight-deme, and sixteen-deme circular stepping-stone models. We 
compared three different null distributions—from the Lewontin–Krakauer distribution, from single-locus FST values from common variants (with a minor 
allele frequency of at least 0.05), and from Koch’s (2019) multivariate normal procedure—with neutral QRB

ST values simulated under circular 
stepping-stone models. Each QST distribution included 10,000 traits with 1,000 causal loci. The panels show the results of a) three proposed nulls 
compared with QST distributions and b) type I error rates in QST–FST comparisons of four-deme, eight-deme, and sixteen-deme circular stepping-stone 
models. Effect sizes were randomly sampled from a Gaussian distribution with variance 1; the value of (t − tW)/t was 0.1.
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when computing the among-population variance, whereas both 
FWC

ST and QPBS
ST do use Bessel’s correction. Weaver (2016) also showed 

that both FNei
ST and QRB

ST correspond to (t − tW)/t, where t is the aver
age pairwise coalescence time for alleles drawn from the popula
tion at large, and tW is the average pairwise coalescence time for 
alleles drawn at random from the same subpopulation. Similarly, 
FWC

ST and QPBS
ST correspond to (tB − tW)/tB, where tB is the average pair

wise coalescence time for alleles drawn from different subpopula
tions. When FNei

ST is used to develop a null distribution for QPBS
ST , tests 

for local adaptation can be anticonservative when the number of 
demes is small. This issue is subtle when the number of demes is 
large, but it is also easy to miss—indeed, in Koch’s (2019) paper, 
which presents the approach that performs best overall here, the 
distribution developed is most appropriate for QRB

ST , but it appears 
to be compared with QPBS

ST in simulations.
We find that in many settings, the Lewontin–Krakauer distribu

tion provides an acceptable null distribution for QST on polygenic 
traits, with calibrated or somewhat conservative type I error rates. 
However, it is important that the Lewontin–Krakauer distribution is 
parameterized by the correct version of FST. Specifically, in our 

simulations, the Lewontin–Krakauer distribution works best when 
parameterized by FNei

ST if QRB
ST is the test statistic, and by FWC

ST if QPBS
ST 

is the test statistic. Further, the genome-wide FST should be esti
mated via a ratio-of-averages approach—average-of-ratios estima
tors are biased downward, particularly if relatively rare variants are 
included, leading to excess type I errors in tests for local adaptation.

The one scenario we tested in which the Lewontin–Krakauer 
distribution consistently failed, even when appropriately parame
terized, was in circular stepping-stone models with large numbers 
of demes. Spatial structure has previously been observed to lead to 
difficulties with the Lewontin–Krakauer distribution as a null distri
bution for QST with large numbers of demes (Koch 2019). However, 
in these scenarios, and in all others, we observed that Koch’s (2019)
procedure produced calibrated type I error rates for polygenic traits 
when used as a null distribution for QRB

ST . Though we did not pursue 
it explicitly, we also suspect that a slight modification of Koch’s pro
cedure would produce calibrated type I error rates for QPBS

ST with 
small numbers of demes. Koch’s procedure computes QST values 
by simulating genetic values for traits that obey a multivariate nor
mal distribution with expectation zero and covariance determined 

Fig. 6. Summary of main results in terms of type I error rates. All results shown here are from star-like split models; the number of demes is shown in each 
panel. a) Ratio-of-averages estimates of genome-wide FST tend to produce calibrated or conservative type I error rates. In contrast, average-of-ratios FST is 
biased downward, causing elevated type I error rates when used to parameterize the Lewontin–Krakauer distribution. b) The versions of FST and QST used 
should match in terms of their coalescent interpretations. Using QRB

ST with FNei
ST tends to produce calibrated or conservative results, as does using QPBS

ST with 
FWC

ST . c,d) Using the full distribution of single-locus FST values produces calibrated tests for randomly chosen single-locus traits while anticonservative for 
polygenic traits. Using the distribution of single-locus FST values for common variants produces conservative P-values. Koch’s (2019) procedure also 
produces calibrated P-values for polygenic traits when the necessary mean coalescence times are known and QRB

ST is used.
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by the average within- and between-deme coalescence times. Koch 
(2019) showed that this distribution is a good approximation for suf
ficiently polygenic traits with effect-size distributions that are not 
too heavy tailed. Here, we used the known coalescence time distri
butions to parameterize Koch’s procedure. However, this arguably 
does not distinguish it much from other procedures we tested, as 
we simulated large numbers of neutral loci and thus generated 
very precise FST estimates.

Finally, we also tested use of the distribution of single-locus FST 

values as a null distribution for QST. If all loci were used, this pro
cedure produced calibrated type I errors for random monogenic 
traits (but see above), and badly anticonservative tests for poly
genic traits. However, limiting the single-locus FST values to those 
at loci with common minor alleles rescued the procedure for poly
genic traits, causing it to perform well in every scenario tested. 
Our favored explanation for this is that drift at sufficiently com
mon variants over short timescales can be approximated by a nor
mal distribution (Nicholson et al. 2002; Berg and Coop 2014). Thus, 
for common variants, the distribution of allele frequencies among 
subpopulations might be well approximated by the multivariate 
normal distribution developed by Koch (2019). Presumably the 
procedure for defining “common” variants for inclusion should 
depend to some degree on the type of population structure ob
served, but we do not pursue this question here.

Our work here focused specifically on the “evolutionary” vari
ation in neutral QST. That is, we assumed that we had access to 
the genetic values of the trait (also called breeding values) for a 
large number of individuals per deme, as well as genotypes at a large 
number of selectively neutral loci for each individual. Thus, we fo
cused on variation caused by the evolutionary-genetic process and 
did not consider the effect of uncertainty in estimating the within- 
and among-deme genetic variance in the trait, and in estimating 
FST. In real applications, these other considerations are important 
(Whitlock 2008), but it is also important to consider the “evolution
ary” variation in its own right, as we have done here, because it exists 
regardless of study design or precision of measurement.

In recent years, alternatives to QST–FST comparisons have been 
developed that take advantage of more information about popula
tion structure than provided by FST alone (Ovaskainen et al. 2011; 
Berg and Coop 2014; Josephs et al. 2019). Koch’s (2019) method for 
developing a null distribution for QST can be seen as part of this fam
ily of extensions, as it uses the set of mean within- and between- 
deme coalescence times to produce a null distribution for QST rather 
using the value of FST itself. Such methods can produce more 
powerful or better calibrated tests of local adaptation in some 
cases. However, the properties of QST–FST comparisons that we 
study here are still important. One reason is that common-garden 
studies, which are necessary for rigorous interpretation (Brommer 
2011; Schraiber and Edge 2024), are difficult and time-consuming 
to perform, and many have been performed at substantial effort 
and expense, not all of which will have retained the data necessary 
to perform a reanalysis with a more modern method. There is thus 
value in ensuring that the lessons learned from common-garden 
studies are robust. To do so, it would be fruitful to consider the types 
of markers used in many common-garden QST–FST comparisons—in 
many cases, data from microsatellites or RADseq—from the coales
cent perspective used here. For example, estimates of FST from mi
crosatellites are often lower than for other markers (Jakobsson et al. 
2013), which might be expected to lead to QST values that spuriously 
indicate local adaptation (Edelaar et al. 2011). Measures of genetic 
differentiation at microsatellites designed to estimate the same 
function of coalescence times as Nei’s FST—for example, Slatkin’s 
RST (Slatkin 1995)—might provide a way forward in such cases if 

their assumptions are met. As such, the coalescent perspective on 
neutral quantitative-trait differentiation (Whitlock 1999; Koch 
2019) can inform both new analyses and reanalyses of valuable 
archival data on local adaptation.

Data availability
Supplementary Tables 1–2 and Figs. 1–16 are available in 
Supplementary text. All code used to run and analyze the simula
tions in this study is available at https://github.com/junjianliu/ 
qst_fst. All work was performed in msprime version 1.3.3 
(Baumdicker et al. 2022), python version 3.9.9, and R version 4.1.0.
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