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Scalable methods for estimating marginal coalescent trees across the genome present new opportunities for studying evolution and 
have generated considerable excitement, with new methods extending scalability to thousands of samples. Benchmarking of the avail
able methods has revealed general tradeoffs between accuracy and scalability, but performance in downstream applications has not 
always been easily predictable from general performance measures, suggesting that specific features of the ancestral recombination 
graph (ARG) may be important for specific downstream applications of estimated ARGs. To exemplify this point, we benchmark ARG 
estimation methods with respect to a specific set of methods for estimating the historical time course of a population-mean polygenic 
score (PGS) using the marginal coalescent trees encoded by the ARG. Here, we examine the performance in simulation of seven ARG 
estimation methods: ARGweaver, RENT+, Relate, tsinfer+tsdate, ARG-Needle, ASMC-clust, and SINGER, using their esti
mated coalescent trees and examining bias, mean squared error, confidence interval coverage, and Type I and II error rates of the down
stream methods. Although it does not scale to the sample sizes attainable by other new methods, SINGER produced the most accurate 
estimated PGS histories in many instances, even when Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust used samples 10 
or more times as large as those used by SINGER. In general, the best choice of method depends on the number of samples available and 
the historical time period of interest. In particular, the unprecedented sample sizes allowed by Relate, tsinfer+tsdate, ARG- 
Needle, and ASMC-clust are of greatest importance when the recent past is of interest—further back in time, most of the tree has 
coalesced, and differences in contemporary sample size are less salient.
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Introduction
The ancestral recombination graph, or ARG (Griffiths and 
Marjoram 1996), is a rich representation of the history of a sample 
of haplotypes, including all the mutation, recombination, and 
common-ancestry events that affect contemporary variation. 
Thus, the ARG encodes all historical information that can be ex
tracted from a sample of contemporary genomes, much of it in 
gene genealogies or coalescent trees (Hudson 1990; Wakeley 
2016) for every location in the genome, termed “local” or “margin
al” trees. The true ARG is generally unknown, and estimation of 
the ARG is a very challenging problem. Nonetheless, the last 10 
years have witnessed major advances in ARG estimation, with 
new methods that provide estimated ARGs with unprecedented 
accuracy, scalability, or both (Rasmussen et al. 2014; Mirzaei and 
Wu 2017; Kelleher et al. 2019; Speidel et al. 2019; Zhang et al. 
2023; Deng et al. 2024). These advances have produced a great 
deal of excitement about the potential of estimated ARGs in evo
lutionary biology and beyond (Harris 2019, 2023; Brandt et al. 
2024; Lewanski et al. 2024; Wong et al. 2024; Nielsen et al. 2025).

The promise of estimated ARGs depends on their performance 
in downstream applications. Many of the available ARG 

estimation methods have been benchmarked in general terms 
(Deng et al. 2021; Brandt et al. 2022), revealing tradeoffs between 
accuracy and scalability. (We refer to all the methods we consider 
here as “ARG estimation” methods, regardless of whether they es
timate the full ARG, including recombinations between marginal 
trees, or just a set of marginal trees.) However, early indications 
are that the actual performance of ARG estimators in downstream 
applications can vary in ways that are not necessarily predicted by 
a generic accuracy-versus-scalability tradeoff (Fan et al. 2022, 
2023). Thus, it seems as though the performance of estimated 
ARGs in downstream procedures may depend on specific features 
of the ARG and how well they are estimated.

To explore this point in depth, we conducted thorough bench
marking of ARG estimators with respect to a set of methods for 
studying polygenic traits. These methods take estimated marginal 
trees as input. Polygenic traits—traits influenced by genetic var
iants from across the genome—are a promising area for applica
tions of estimated ARGs (Edge and Coop 2019; Stern et al. 2021; 
Link et al. 2023; Zhang et al. 2023; Christ et al. 2024; Gunnarsson 
et al. 2024; Wang et al. 2024; Zhu et al. 2024). Understanding the 
evolution of polygenic traits is challenging in part because signals 
of selection are spread across many loci. Researchers can study 
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the history of polygenic traits by examining fossil records 
(Kappelman 1996) or ancient DNA (Mathieson et al. 2015) where 
available. However, many traits do not leave a fossil record, and 
ancient DNA is not always available. An alternative approach is 
to examine the genomes of contemporary individuals, perhaps 
in combination with the estimated effects of contemporary var
iants on target traits (Berg and Coop 2014; Robinson et al. 2015; 
Field et al. 2016; Racimo et al. 2018; Uricchio et al. 2019), examining 
either allele-frequency differences among groups or traces of se
lection in patterns of within-population genetic diversity. If allele- 
frequency changes can be estimated from contemporary genetic 
data, then those allele-frequency changes, in combination with 
information about associations between alleles and traits of inter
est, can be used to study selection on traits. One reason estimated 
ARGs may be useful in population-genetic analysis of such subtle 
signals is that, to the extent the estimated ARG is correct, it natur
ally integrates information from flanking genomic regions in a 
way that reflects the history of recombination near the locus 
(Link et al. 2023). Relatedly, others have noted that even if esti
mated tree sequences are incorrect, the fact that they integrate in
formation from nearby segments can prove useful in downstream 
inference (Whitehouse et al. 2024).

Edge and Coop (2019) proposed a set of methods to estimate the 
historical time course of a predicted population-mean trait level 
using local coalescent trees embedded in an ARG. The trait predic
tion is known as a polygenic score (PGS) or polygenic index. 
Although some of their methods are applicable to any trait predic
tion formed from genetic data, Edge and Coop focused on a 
population-mean PGS expressed as a weighted sum of population 
allele frequencies at unlinked loci, Z(t) = 2

􏽐k
i=1 βipi(t), where the 

weight βi is the additive effect size on a trait of interest of an allele 
at locus i, and pi(t) is the frequency of the effect allele at locus i at 
time t. The estimators operate by estimating allele-frequency 
changes at the loci contributing to the PGS. Under neutrality, 
the proportion of lineages at time t in a coalescent tree subtending 
derived alleles in the contemporary sample is an unbiased estima
tor of the derived-allele frequency at time t. Under selection, the 
ancestors of the sample are a biased sample from the ancestral 
population, but ideas from phylodynamics can be borrowed to 
form noisy estimates of the number of carriers of each allelic 
type in a specified time period.

To gain a deeper understanding of the performance of differ
ent ARG estimation approaches in estimating population-mean 
PGS histories, we applied the Edge and Coop framework to esti
mate local trees from 7 methods for ARG estimation. For com
parison with the work of Edge and Coop (2019), we evaluated 
RENT+ (Mirzaei and Wu 2017), which they used in their original 
paper. We also evaluated the performance of ARGweaver 
(Rasmussen et al. 2014), which predates RENT+ and provides 
more accurate estimates on smaller samples, as well as 
Relate (Speidel et al. 2019), tsinfer+tsdate (Kelleher et al. 
2019; Wohns et al. 2022), ARG-Needle and ASMC-clust (Zhang 
et al. 2023), and SINGER (Deng et al. 2024), all of which scale to 
larger samples. We also consider the effect of sample size on 
the resulting estimates.

Methods
We simulated derived-allele frequency trajectories at all unlinked 
loci that affect a trait. The true population-mean PGS trajectory 
was computed as the weighted sum 2

􏽐k
i=1 βipi(t) of these allele- 

frequency trajectories, where the weights βi are additive effect 
sizes, and pi(t) is the frequency of the effect allele at locus i at 

time t. Taking these simulated allele-frequency trajectories as in
put, we generated corresponding coalescent trees and haplotypes 
using mssel (Berg and Coop 2015). The haplotypes were fed to all 
of the tree estimation software packages considered here, and the 
estimated trees were saved. Upon obtaining both the true and es
timated trees, we applied the allele-frequency estimators from 
Edge and Coop (2019) to them, and the estimated allele-frequency 
trajectories were used to compute estimated population-mean 
PGS trajectories using the additive effect sizes. The estimated 
population-mean PGS trajectory was then compared with the 
true trajectory using various metrics (Fig. 1).

Simulations
We simulated the population-mean PGS trajectories of traits addi
tively determined by 100 unlinked loci under two scenarios: (i) 
neutral evolution and (ii) trait-increasing directional selection oc
curring from 0.04 to 0.02 coalescent units ago, with neutrality at 
other time points. Assuming an effective population size of 
10,000 and a generation time of 30 years, the period of 0.02–0.04 
coalescent units in the past corresponds to 12,000–24,000 years 
in the past, or the most recent part of the Upper Paleolithic. 
Because the bulk of ancient DNA evidence is from samples more 
recent than this (Mathieson et al. 2015; Speidel et al. 2021; Stern 
et al. 2021), indirect methods to detect selection in humans are 
perhaps especially of interest in this epoch, given that allele- 
frequency changes cannot as easily be examined directly 
(Le et al. 2022; Mathieson and Terhorst 2022). The PGS is a 
weighted sum of the allele frequencies, with weights equal to 
the additive effect sizes. There are no environmental effects or in
teractions—in our simulations, there is no distinction between the 
PGS and the trait. Further, we treat all the effect sizes as known.

For each trait, we simulated the derived-allele frequency his
tories of 100 trait-associated loci. For each locus, an effect size 
for the derived allele was drawn from a normal distribution 
N (0, h2σ2w/n) in which the heritability h2 and the contemporary 
variance σ2 of the trait are set to 1, w is a modified version of 
Watterson’s constant calculated as 

􏽐⌊(1−c)2N⌋
i=⌈2Nc⌉ 1/i (N is the effective 

population size; c is the minimum minor allele frequency being 
drawn, we set c = 0.01), and n is the number of loci affecting the 
trait, set to 100. We consider a hypothetical trait with a heritability 
of 1 and for which “true” additive effect sizes are known. We do 
this because we are interested in considering estimation accuracy 
at the level of a population-mean polygenic score rather than the 
trait to which the polygenic score corresponds. Polygenic scores 
will differ from trait values due to biases and errors in genome- 
wide association study (GWAS) estimation and SNP heritabilities 
less than one, among other factors. Further, back in time, system
atic changes in the environment and difficulties in “porting” poly
genic scores trained in modern samples onto ancient samples will 
affect accuracy. Thus, we limit our focus to accuracy in 
population-mean polygenic score estimation. However, we em
phasize that the model for selection we use assumes that selec
tion occurs on the polygenic score itself. Given that most 
polygenic scores are noisy predictors of the traits with which 
they are associated, the selection gradients we simulate might 
be thought of as corresponding to larger selection gradients on ac
tual trait values.

Next, we simulated allele-frequency trajectories for each locus. 
For both neutral and selected traits, the majority of the history of 
each locus was simulated backward in time—for neutral traits, 
simulation was entirely backward, and for selected traits, simula
tion was backward-in-time prior to the period in which selection 
occurred. The simulation is forward-in-time during the selection 
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interval and afterward. We set the probability of obtaining a 
derived-allele frequency k/2N at the more recent end of the period 
simulated backward in time to be inversely proportional to k, 
where k ∈ {1, . . . , 2N − 1}. This sampled allele frequency serves 
as the present derived-allele frequency under neutrality and as 
the initial allele frequency at the onset of selection in the recent- 
selection scenario.

Given a derived-allele frequency pi(t), the allele frequency 
at 1/(2N) coalescent time units in the past was drawn from 
N (pi(t)(1 − 1/2N), pi(t)(1 − pi(t))/2N) (Przeworski et al. 2005; Berg 
and Coop 2015; Lee and Coop 2017). During the selection period, 
we simulated the derived-allele frequency forward in time in 
steps of 1/(2N) coalescent units. The frequency pi(t + 1) was drawn 
from N (pi(t) + spi(t)(1 − pi(t)), pi(t)(1 − pi(t))/2N) conditional on the 
frequency pi(t), where s is the selection coefficient on the derived 
allele at time t. The value of s is αβ, where α is the selection gradi
ent on the trait at time t and β is the effect size of the derived allele. 
(We set the value of α according to the expected trait variance at 
the onset of selection, which was 1.) This procedure is an approxi
mation of allele-frequency dynamics under polygenic selection, 
but it is one that captures the overall patterns we seek to study 
(see supplementary text and Supplementary Fig. S1 for a compari
son with truncation selection simulated forward in time).

After the allele-frequency trajectory was simulated, the 
polygenic-score trajectory calculated based on the allele-frequency 
trajectory was retained if the difference in population-mean PGS 
between the onset and end of the selection was within 5% of the 
expected change 2NδtS, where δt is the duration of selection in co
alescent units and S is the selection differential on the PGS. We 

imposed this 5% cutoff in order to ensure that the degree of trait 
change during the period of selection was similar across itera
tions, and to ease comparisons with the results of Edge and 
Coop (2019), who used the same cutoff. It leads to selection of 
the 25–30% of simulated trait trajectories closest to the expect
ation in the parameter regime we used.

We used an unpublished modified version of ms (Hudson 2002) 
called mssel (Berg and Coop 2015) to produce simulated local co
alescent trees and haplotypes across a region flanking the causal 
variant. In mssel, for most simulations, the sample size was set to 
2,000 and the number of derived chromosomes was drawn as a bi
nomial random variable with a size of 2,000 and success fre
quency equal to the contemporary allele frequency. We selected 
an effective population size N of 10,000, and a haplotype length 
of 200,000 base pairs (with the effect locus at position 100,000). 
The per-base-pair mutation rate was set as 2e−8, and the 
per-base-pair recombination rate was set as 2.5e−8. These values 
were transformed to population-scaled mssel inputs of -r 199.5 
and -t 159.68. To explore additional scenarios, we also inde
pendently simulated larger sample sizes (5,000), haplotype of 
500,000 base pairs, realistic human demography, genotyping er
ror, and phasing error.

Software specifications
The coalescent trees produced by mssel for the selected sites are 
the true trees, and the haplotypes corresponding to the true trees 
were used as input to ARG estimation software to generate esti
mated trees. A brief description of each piece of estimation soft
ware can be found in supplementary text. The ARG estimation 

Fig. 1. Method overview. a) Simulate derived-allele frequency trajectories at unlinked loci. b) Generate true trees and haplotypes from those trajectories. 
c) Obtain estimated trees from tree estimation software. d) Apply allele-frequency estimators to true and estimated trees, then compare the true and 
estimated population-mean PGS trajectories.
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programs vary with respect to the total sample size that can be 
used. We thus down-sampled the 2,000 simulated haplotypes 
generated in each simulation as necessary. We used 20 randomly 
drawn haplotypes as input to ARGweaver, and 20 and 200 haplo
types for RENT+ and SINGER. For comparison with these methods, 
we also used the same subsamples of 20 and 200 haplotypes as in
put to Relate and tsinfer+tsdate. We did not use subsamples 
for ARG-Needle or ASMC-clust, which require sample sizes of at 
least 300 haplotypes.

ARGweaver
ARGweaver site input files were generated by a custom Python 
function. We ran the arg-sample program with the same values 
in the simulation (-N 10000, -r 2.5e−8, -m 2e−8) with the SMC’ 
model (-smcprime). The total number of sample iterations (-n) 
was set to 700 with the first 200 iterations as burn-in, and 50 esti
mated trees were extracted for one locus, one from every 10th it
eration (-sample-step 10).

RENT+
Haplotypes generated by mssel were converted to RENT+ format. 
We ran RENT+ using −t to estimate branch lengths for local trees 
and −l to specify the proportional positions on the chromosomes.

Relate
We wrote a script to generate Relate haps, map, and sample files 
from simulated haplotypes. Relate was run with -mode All, 
-m 2e−8 (mutation rate), and -N 20,000 (haploid effective popula
tion size). We used the add-on module RelateExtract to extract 
the tree corresponding to the selected site.

tsinfer+tsdate
The tsinfer input file was generated by calling the add_site 
function. Coalescent trees were estimated with tsinfer using de
fault settings. The age of nodes in the tree was estimated using 
tsdate with the same parameter values as in the simulations 
(Ne=10,000, mutation_rate=2e−8). We converted the tree at 
the selected site to Newick format with the as_newick method 
in tskit.

ARG-Needle and ASMC-clust
The haps, map, and sample input file of ARG-Needle were 
generated by custom R functions. We set the -normalize param
eter as the default value and used the constant 20K-sized (haploid 
population size) demography for -normalize_demography. 
ARG-Needle requires a “decoding file” containing information 
about the demographic model, time discretization, and allele- 
frequency information. We created our own decoding file with 
the prepare_decoding function in Python package asmc— 
derived-allele frequencies were calculated on the basis of the si
mulated haplotypes; the discretized time intervals were set as 
14 intervals of 30 generations each starting in the present (0, 30, 
60…, 420), followed by 14 more ancient intervals of 100 
generations (520, 620, 720,…, 1920); the demography file was 
built with a constant population size (Ne = 20, 000). The output 
tree was converted to Newick format with the arg_to_newick 
function from the arg_needle_lib package. Both choices for 
parameter --mode (“array” and “sequence”) were tested. To run 
ASMC-clust, we set the parameter -asmc_clust to 1. Other para
meters were kept at the default values.

SINGER
The VCF file was generated from the simulated data by a custom R 
function. The mutation rate (-m) was set to 2e−8 and the ratio 
(-ratio) was set to 1.25. The population size (-Ne) was set to 
10,000. SINGER was run for 7,000 iterations, with the first 2,000 
iterations as burn-in and thinning every 10 iterations (-thin 10). 
We took 50 samples from the 5,000 posterior trees with interval 
size 100 (-step 10). The estimated trees were stored as tree se
quences. The marginal tree at the selected site was converted to 
Newick format with the as_newick method in tskit.

Branch length units
The ARG estimation tools we considered use different units for 
branch length. We standardized branch lengths to units of 2N 
generations for all trees. True trees from mssel are produced in 
units of 4N generations, so we multiplied the branch lengths by 
2. In the manuscript describing RENT+, there is some ambiguity 
about the units, which are described as “standard coalescent 
units” (typically units of 2N generations), but in some calculations 
appear as if they are in units of 4N generations (Supplementary 
Tables S1 and S2). We applied the estimators on both the original 
branch lengths (assuming units of 2N generations) and a rescaled 
branch length (assuming the reported values are in units of 4N 
generations). We show the rescaled version in comparison with 
the other methods—although Edge and Coop (2019) treated the re
ported branch lengths as if they were in units of 2N generations, 
we believe that the makers of RENT+ intended the branch lengths 
to be interpreted as in units of 4N generations. However, assuming 
2N-generation units leads to slightly better performance on aver
age (Supplementary Figs. S2 and S3, Table S1). The ARGweaver, 
tsinfer+tsdate, ARG-Needle, ASMC-clust, and SINGER trees 
are reported in units of generations, and we divided their original 
branch length by 2N. Relate trees use years as the unit and as
sume 28 years per generation when exported in Newick format, 
so we divided the original branch length by 28 × 2N. Average times 
to most recent common ancestor (tMRCA) from the original 
branch length and the scaled branch length for each method are 
listed in Supplementary Tables S1 and S2.

Applying population-mean PGS trajectory 
estimators to the estimated trees
We applied the three estimators proposed in Edge and Coop 
(2019): the “proportion-of-lineages” estimator, the “waiting-time” 
estimator, and the “lineages-remaining” estimator (further de
scription of the estimators in supplementary text). All three esti
mators were applied to the estimated trees to obtain the 
estimated allele-frequency trajectories for each locus. For 
ARGweaver and SINGER trees, since there is more than one esti
mated tree for each locus, we applied the estimators to each 
sampled tree and took the average result from 50 trees as the es
timated frequency trajectory for that locus. As discussed in Edge 
and Coop (2019), the proportion-of-lineages estimator is expected 
to perform well under neutral evolution but to be biased during 
periods of directional selection. The other two estimators are ex
pected to be approximately unbiased given the true trees but to 
be much more variable. The waiting-time estimator, as written 
in Edge and Coop (2019) is not applicable in cases in which there 
are polytomies in a coalescent tree. We devised a scheme to ad
dress this limitation (see supplementary text).

As a general note about the estimators of Edge and Coop (2019), 
we emphasize that the relationship between changes in the 
population-mean PGS and trait changes is not straightforward. 
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Even if PGS histories are estimated perfectly on an accurate PGS, 
phenotypes may be influenced by environmental changes and 
gene-by-gene or gene-by-environment interactions. Additionally, 
the linkage disequilibrium (LD) between markers and causal var
iants will change over time, causing the relationship between 
markers and the phenotype to change with it (Martin et al. 2017). 
Finally, some variants affecting the trait in the past will have 
been lost in the present (Carlson et al. 2022) or may no longer be 
detectable in GWAS. Nonetheless, Edge and Coop’s methods can 
be used to identify and roughly date patterns of allele-frequency 
change that are not consistent with neutral evolution.

As noted by Edge and Coop (2019), like many methods for de
tecting selection from GWAS information, their methods are vul
nerable to biases from population stratification or assortative 
mating, which can create spurious signals of directional selection. 
One potential countermeasure is to use effect size estimates from 
family-based studies, which are less sensitive to such biases, 
though not completely immune (Veller and Coop 2024; Veller 
et al. 2024).

Benchmarking metrics
We evaluated the performance of the ARG-estimation software 
as inputs to various approaches to PGS-history estimation, com
paring them in terms of bias, mean squared error (MSE), 95% 
confidence interval coverage, and type I error rates and power 
(at the 0.05 level) of the TX statistic for testing directional 
selection (Edge and Coop 2019). The TX statistic is computed as 
a sum of squared, standardized changes in an estimated 
population-mean PGS between prespecified time points. That 
is, TX =

􏽐w
j=0 X2

j , with

Xj =
Z(tj) − Z(t j−1)
����������������
2VA(tj − t j−1)

􏽱 , 

where Z(tj) is the population-mean PGS at time tj, and VA is the 

additive genetic variance of the PGS (2
􏽐k

i=1 β2
i pi(1 − pi)). Under 

neutral evolution, Xj approximately follows a standard normal 

distribution, and the allele-frequency changes are independent 

in distinct time intervals. Thus TX, the sum of the X2
j , should ap

proximately follow the χ2(w) distribution. However, under direc
tional selection, the population-mean PGS changes more 
quickly than predicted under neutrality, leading to TX values 

that are large compared with the expected χ2(w) distribution. 
TX is sensitive to directional selection. Although Appendix A of 
Edge and Coop (2019) is suggestive of a modification of TX that 
might be sensitive to stabilizing selection, no such statistic has 
yet been proposed or studied in this framework.

The efficacy of Edge and Coop’s estimators depends on the ac
curacy of branch lengths in the estimated trees. To explore the dif
ferences in software performance, we extracted the pairwise 
coalescent times from true trees and estimated trees. Then, we 
compared the point estimate of coalescent times between the 
two, and the overall distribution of pairwise coalescent times 
from estimated trees against the expected exponential distribu
tion, similar to the benchmarking recently performed by 
Brandt et al. (2022). To obtain the samples of pairwise coalescent 
times, we gathered trees containing the causal allele from 10 ran
domly selected simulated traits, resulting in a total of 1,000 trees. 
Specifically, for Relate, tsinfer, ARG-Needle, and ASMC-clust, 
we collected pairwise coalescence times from their 2,000-sample 
trees. For RENT+ and SINGER, we used 200-sample subtrees, and 

for ARGweaver, we used 20-sample subtrees. In the case of 
ARGweaver and SINGER, we averaged pairwise coalescence 
time across 50 sampled trees per locus. The averaged times cor
respond to the same pairs of tips in each sampled tree. Due to 
memory constraints, we could not plot all pairwise coalescence 
times from one thousand distinct 200-sample and 2,000-sample 
trees. Instead, we randomly sampled 190,000 pairwise coales
cence times, which is 1,000 times the total number of pairs of 
tips on a 20-tip tree (i.e. 1,000 times 20

2

( 􏼁
).

We also examined the impact of a selection event on the dis
tribution of pairwise coalescence times by setting the selection 
coefficient to ∼0.004, causing the derived-allele frequency to in
crease from approximately 0.3 to 0.7 during the selection period. 
Then, 100 estimated trees with 300 samples were generated on 
the basis of this allele-frequency trajectory. We compared the 
MSE of the estimates from true trees with different sample sizes 
(20, 200, and 2,000 haplotypes) to assess the effect of the in
creased sample size.

To explore the relationship between measures of tree-topology 
accuracy and performance in estimation of population-mean PGS 
history, we examined the Robinson–Foulds (Robinson and Foulds 
1981) and Kendall–Colijn distance (Kendall and Colijn 2016) be
tween true trees and estimated trees and the proportion of esti
mated trees with monophyletic derived tips.

Results
Runtime comparison
The ARG-estimation tools we consider vary substantially in their 
runtime. One important difference is between tools that incorpor
ate MCMC sampling (ARGweaver and SINGER) and those that do 
not. Both ARGweaver and SINGER sample trees from the posterior 
distribution, and the reported runtime represent 700 MCMC sam
ples (200 burn-in) from ARGweaver and 7,000 MCMC samples 
(2,000 burn-in) from SINGER. SINGER is, as expected, substantially 
faster than ARGweaver. Additionally, tsinfer has a clear advan
tage in speed with larger sample sizes. Average runtimes for every 
tool are listed in Table 1.

Bias, mean squared error, and confidence interval 
coverage under neutrality
When traits are simulated under neutral evolution and the true 
trees are known, the proportion-of-lineages procedure can be 
viewed as a maximum-likelihood estimator for the allele- 
frequency history (Edge and Coop 2019). The waiting-time and 
lineages-remaining estimators have previously been observed to 
be more variable than the proportion-of-lineages estimator with 
either the true trees or RENT+ trees (Edge and Coop 2019).

Table 1. Average runtime for estimating ARGs for one 200 kb 
segment of 20, 200, 2,000 and 5,000 samples from the 
ARG-estimation tools.

Sample size 20 200 2,000 5,000

RENT+ 3.9 38 — —
ARGweaver 2,723 — — —
Relate 0.4 2.5 392.9 1,863.5
tsinfer 0.9 2.2 6.7 37.1
SINGER 259 917 — —
ARG-Needle — — 165 422.6
ASMC-clust — — 1,594 –

Runtimes are measured in seconds.
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With respect to bias, we find that, in line with previous results, 
none of the estimators display much bias when estimated with 
the true trees or RENT+ under neutrality. In addition, almost 
all newly tested tools/algorithms (Relate, tsinfer+tsdate, 
ARGweaver, ASMC-clust, and SINGER) follow similar patterns. 
Differences in bias resulting from trees estimated with these dif
ferent pieces of software, especially during the recent past, and 
especially with the proportion-of-lineages estimator, are relative
ly minor (Fig. 2a–c, Supplementary Figs. S4–S6). Results for 
ARG-Needle are reported in the supplement and show more 
bias than other estimated trees (Supplementary Fig. S6). The 
likely reason for this is that ARG-Needle’s algorithm does not 
guarantee that mutations map to particular branches in the 
ARG. Instead, carriers of the derived allele may form polyphyletic 
groups on the local marginal tree. The frequency of nonmono
phyly among tips carrying the derived allele is much higher in 

ARG-Needle trees than in trees estimated by any other method 
(Supplementary Table S3). Although such polyphyly may be 
acceptable for many purposes, it can cause major problems for 
the estimators of Edge and Coop (2019), particularly in the ancient 
past. However, if ARG-Needle trees are manually modified to 
force monophyly among derived-allele-carrying tips, then the 
bias of ARG-Needle is similar to other methods (Supplementary 
Fig. S7). We also found that when the “–mode” parameter in 
ARG-Needle is set to “sequence,” the results improve over the de
fault value of “array” (Supplementary Fig. S7), which is sensible gi
ven that the simulated data we provide to ARG-Needle includes 
all variants flanking the focal site.

The advantage of the proportion-of-lineages estimator over the 
waiting-time and lineages-remaining estimators under neutrality 
is more apparent when examining estimated MSE. In the three 
MSE plots (Fig. 2d–f), MSE tends to increase from the recent past 

a b c

d e f

g h i

Fig. 2. The bias (a–c), MSE (d–f), and confidence interval coverage (g–i) of the proportion-of-lineages (left column), waiting-time (middle column), and 
lineages-remaining estimators (right column), with the true trees and estimated trees from each ARG-estimation method as input. For the estimates 
computed from true coalescent trees (black lines), 1,000 simulations were performed with a sample of 2,000 chromosomes. In each simulation, the PGS 
was formed from 100 loci and evolved neutrally. Relate, tsinfer, and ASMC-clust were used to reconstruct trees with 2,000 chromosomes. SINGER was 
run with 200 chromosomes, and ARGweaver was run with 20 chromosomes. Lines represent means from 100 simulations. Times are displayed assuming 
diploids with Ne = 10,000 and a generation time of 30 years, i.e. one coalescent unit corresponds to 600,000 years.
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into the distant past for all estimators and all software packages. 
This is unsurprising. Under neutrality, the variance of the 
proportion-of-lineages estimator is inversely related to the num
ber of lineages ancestral to the sample (Edge and Coop 2019). 
Thus, the fact that most lineages coalesce in the recent past 
implies that the estimator is more variable in the distant past. 
The proportion-of-lineages estimator (Fig. 2d) exhibits a much 
lower MSE than the other two estimators. The true trees, again 
unsurprisingly, provide the best MSE. However, among the esti
mated ARGs, the ones produced by software that scales to 
large samples do not necessarily show markedly better perform
ance. Across much of the range examined, SINGER, which uses 
samples of only 200 haplotypes, has the lowest MSE, and in 
the more distant past, ARGweaver, which uses samples of only 
20 haplotypes, is comparable with ASMC-clust, which uses sam
ples of 2,000 haplotypes. In the MSE plots of the waiting-time and 
lineages-of-remaining estimators, the estimates derived from 
ARGweaver and SINGER trees consistently show relatively low 
MSE values (Fig. 2e, f).

We assessed credible interval coverage with SINGER and 
ARGweaver and confidence interval coverage with the true trees 
and all other methods (Fig. 2g–i). The true trees produce accept
able coverage with all estimators. Credible intervals from 
SINGER-estimated trees also show consistently high coverage in 
most cases, though they drop below 95% coverage in the recent 
past with the proportion-of-lineages estimator. Other estimated 
trees, however, all produced somewhat lower coverage, with a 
tendency for coverage to decline into the more distant past.

ARGweaver and SINGER sometimes outperform the true trees 
in terms of MSE or credible interval coverage when the lineages- 
remaining and waiting-time estimators are used, a counter
intuitive result. However, individual ARGweaver and SINGER trees 
do not outperform the true trees (Supplementary Figs. S8 and S9); 
it is only when results are averaged across the many trees pro
duced by these methods that performance exceeds the true trees. 
The lineages-remaining and waiting-time estimators are noisy es
timators that are sensitive to the timing of individual coalescent 
events, and this result suggests that their variability can be re
duced by averaging results across many trees compatible with 
the data.

The bias, MSE, and coverage under neutrality with larger flank
ing regions, a nonconstant demography, simulated genotyping er
ror, and simulated phasing error can be found in Supplementary 
Figs. S10–S13. (We did not run ARGweaver or ASMC-clust in these 
conditions because of their longer runtimes.) The results were 
similar to those in Fig. 2 overall, though Relate and tsinfer 
+tsdate performance under the waiting-time and lineages- 
remaining estimators appeared to decline somewhat with genotyp
ing error and a more realistic human demography. Performance on 
the proportion-of-lineages estimator, which is preferred under 
neutrality, remained about the same.

Bias, mean squared error, and confidence interval 
coverage under recent directional selection
Under selection, the proportion-of-lineages estimator is known to 
be biased, as the ancestors of the sample are not representative of 
the ancestral population from which they are drawn (Edge and 
Coop 2019). The waiting-time and lineages-remaining estimators 
were developed to avoid this bias. As pointed out previously 
(Edge and Coop 2019), because different estimators perform well 
under neutrality and directional selection, one reasonable proced
ure is to test for selection using TX and then choose an estimator 
on the basis of the result.

When there is a burst of directional selection in the recent 
past, the performance differences among ARG-estimation soft
ware packages are more pronounced. In contrast to the neutral 
scenario, and as expected, the proportion-of-lineages estimator 
is more strongly biased, has a higher MSE, and has lower confi
dence interval coverage than the other estimators (Fig. 3a–i, 
Supplementary Figs. S14–S16), particularly during the period of 
selection and more anciently, as expected. Looking backward in 
time, the bias of the proportion-of-lineages estimator between 
the present and the end of the period in which selection occurred 
is low. This basic pattern also appears in the MSE and confidence 
interval coverage plots, with good performance between the pre
sent and the end of directional selection, declining into the past 
during the period in which selection occurred, and then recover
ing during the neutral period that preceded selection.

The waiting-time and the lineages-remaining estimators show 
substantially lower bias (Fig. 3b and c). The true trees generally 
show acceptable performance throughout the time period exam
ined, with only slight bias during the period of selection and fairly 
uniform performance across time on other desiderata. However, 
all estimated trees produce noticeably worse performance on all 
criteria (Fig. 3b–i). Overall, among the estimated trees, the 
SINGER trees produce the lowest bias and MSE and interval cover
age closest to the nominal level. ARGweaver ranks second across 
most of the investigated time. ASMC-clust and Relate are com
petitive in the recent and distant past respectively.

As in the neutral case, we also compared performance between 
individual trees and averages across many posterior ARGweaver 
and SINGER trees (Supplementary Figs. S17 and S18). We also 
compared the performance of original and modified ARG-Needle 
trees (Supplementary Fig. S19). We examined the performance 
of SINGER, Relate, and tsinfer+tsdate for scenarios with lar
ger flanking regions, simulated genotyping error, and simulated 
phasing error (Supplementary Figs. S20–S23). Analogously to the 
neutral case, these changes led to broadly similar results to those 
in Fig. 3, though the performance of Relate and tsinfer+tsdate 
declined somewhat under genotyping error and under a realistic 
human demography.

Power of TX

Next, we examined the type I error rate and power of tests of neu
trality using TX, a test statistic sensitive to changes in a 
population-mean PGS that are larger than expected under neu
trality. TX can be understood as a version of the QX statistic 
(Berg and Coop 2014) applied to a population-mean PGS from 
one population through time, rather than multiple populations 
sampled at the present (Edge and Coop 2019). To use TX, one picks 

a set of time points to calculate the statistic Xj = Z(tj)−Z(t j−1)
�����������
2VA(tj−t j−1)
√ , where 

Z(tj) is the estimated population-mean PGS at time tj and VA is the 

additive genetic variance of the PGS. With the true allele- 
frequency trajectories, under neutrality, the sum across time 

points TX =
􏽐w

j=1 X2
j computed from w distinct intervals is approxi

mately χ2(w) distributed (Edge and Coop 2019).
In line with previous results, TX has an acceptable type I error 

rate when compared against the χ2 distribution only when the 
proportion-of-lineages estimator is used to form the statistic 
(Table 2, Supplementary Table S4). With the proportion-of-lineages 
estimator, the observed type I error rates for the true trees, 
tsinfer+tsdate trees, ASMC-clust trees, and SINGER trees 
do not differ significantly from the nominal rate (RENT+ 
and ARG-Needle trees in Supplementary Tables S5 and S6). 
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For Relate, the type I error rate is slightly higher than nominal. 
However, with all estimators and tree estimation software, 
calibrated type I error rates can be recovered by using a permu
tation distribution instead of the theoretical χ2 distribution, as 
expected.

We also tested TX’s power in simulations that included a period 
of directional selection between 0.02 and 0.04 coalescent units in 
the past. In line with the previous results, TX calculated from the 
proportion-of-lineages-estimated allele frequencies is much more 
powerful than when the other two estimators of allele frequency 
are used. Considering proportion-of-lineages TX, power was ap
proximately 98% with the true trees. Except for SINGER, most es
timated trees lead to a substantial loss in power. Comparing 
against the permutation distribution, SINGER trees led to an ob
served power of 85%, whereas ASMC-clust produced TX statistics 
with a power of 57%, and Relate and tsinfer+tsdate trees 

a b c

d e f

g h i

Fig. 3. The bias (a–c), MSE (d–f), and confidence interval coverage (g–i) of the proportion-of-lineages (left column), waiting-time (middle column), and 
lineages-remaining estimators (right column), with the true trees and estimated trees from each ARG-estimation method as input. The PGS is influenced 
by a period of directional selection that occurred from 0.04 to 0.02 coalescent units ago as represented by the vertical dotted lines. The parameters used to 
run all software are otherwise identical to those applied under neutrality (Fig. 2).

Table 2. Type I error/power: proportion-of-lineages

Input
Proportion-of-lineages

χ2 distribution Permutation distribution

Neutral True trees 0.069 0.054
Relate 0.1* 0.07
tsinfer 0.07 0.04

ASMC-clust 0.04 0.02
SINGER 0.09 0.05

Selection True trees 0.982 0.981
Relate 0.14 0.21
tsinfer 0.19 0.07

ASMC-clust 0.69 0.57
SINGER 0.9 0.85

For the type I error simulations, asterisks indicate whether the observed type I 
error rate differs significantly from the nominal rate of 0.05:  
∗ P < 0.05.
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produced power estimates of 21 and 7%, respectively. Power ob
tained with RENT+ trees with different branch length units can 
be found in Supplementary Table S5.

Comparison between true and simulated pairwise 
coalescence time
A major contributor to differences in performance among the 
tree-estimation procedures is the accuracy of the estimated co
alescence times. We compared the pairwise coalescence times 
from estimated trees with their true values. As measured by the 
Spearman correlation between true and estimated pairwise co
alescence times, SINGER outperforms other software packages, 
with ARGweaver and ASMC-clust close behind. It is also possible 
to see finer-grained patterns in the log-scaled coalescence times 
displayed in Fig. 4. Overall, all three of SINGER, ARGweaver, 
and ASMC-clust show a tendency to overestimate coalescence 
times. But for short coalescence times, ASMC-clust tends toward 
underestimation (Fig. 4). Both Relate and tsinfer+tsdate esti
mates appear biased for moderate-length coalescence times 
(between 0.1 and 1); Relate tends to underestimate these values, 
whereas tsinfer+tsdate tends to overestimate them (Fig. 4). 
Additionally, Relate produces more variable estimates of short 
coalescence times than tsinfer+tsdate, as previously observed 
by Fan et al. (2023). Finally, the time discretizations used by 
ARGweaver and ASMC-clust are visible as horizontal bands. 
These patterns are qualitatively similar when examined in simu
lations performed under neutrality (Supplementary Fig. S24, see 
also Brandt et al. 2022) and in general distributions of pairwise co
alescence times (Supplementary Figs. S25 and S26).

Supplementary Table S7 shows the correlation between the 
true and estimated time to most recent common ancestor 
(tMRCA) for each software package and sample size under neu
trality. With the exception of RENT+, the correlation coefficients 
stay stable across varying sample sizes for Relate, tsinfer 
+tsdate, and SINGER.

To examine the effect of selection on coalescence time estima
tion, we checked the distribution of pairwise coalescence time 

from 100 trees with 300 tips, each subject to a selection event 
that increases the allele frequency from 0.3 to 0.7 between 0.04 
and 0.02 coalescent units in the past. This selection event results 
in a high density of coalescences in the recent past within the 
derived-allele subtree, leading to a higher frequency of short co
alescent times compared with the neutral simulations. This cre
ates a distinct dip in the histogram of pairwise coalescence 
times (Fig. 5). This pattern can also be observed, to varying de
grees, in the distributions of pairwise coalescence times from es
timated trees (Fig. 5). Nevertheless, the dip in the histogram is 
wider and deeper when examining the true trees than when 
examining times from estimated trees. The density of recent co
alescence times is also too low in estimated trees.

Topological aspects of ARG estimation accuracy
In addition to the correlation between true and estimated pairwise 
coalescence times, we considered other aspects of ARG estimation 
accuracy. Specifically, with respect to topology, we considered the 
rate of polyphyly among derived tips (and related measures), the 
Robinson–Foulds distance, and the Kendall–Colijn distance (with 
λ = 0, i.e. excluding branch length information). Results are shown 
in Supplementary Tables S3 and S8.

Each of these measures appears to track performance with re
spect to the estimators we consider here to some degree, but there 
are observations in which software that produces more accurate 
trees via each topological metric produces less accurate 
population-mean PGS histories. For example, with 200 tips, RENT 
+ produces trees with lower Robinson–Foulds distances than 
SINGER, despite SINGER’s excellent performance on our bench
marks. With respect to the Kendall–Colijn distance, with 200 
tips, tsinfer trees perform better than both Relate and RENT+, 
despite the latter’s generally better performance on our 
benchmarks.

Impact of sample size on estimation results
Another potential contributor to differences in performance 
among estimates derived from distinct ARG estimation 

Fig. 4. The comparison of pairwise coalescence times from true trees and estimated trees under directional selection. Each dot represents the true and 
estimated (log) coalescence time between a pair of samples. The diagonal line shows x = y, i.e. true times equal to estimated times. The values in the 
top-left corner show Spearman correlation coefficients.
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procedures is sample size—ARG estimators differ in the sample 
sizes they can accommodate, and this variation is reflected in 
our simulations. Because large samples of haplotypes coalesce 
quickly in the recent past, we expect increased sample size to 
benefit allele-frequency trajectory estimation primarily in the re
cent past. We compared estimated PGS histories formed from the 
true trees obtained from samples of different sizes. The MSE of the 
proportion-of-lineages estimates decreases substantially when 
the sample size increases from 20 to 200. Notably, the MSE is 
not much larger for samples of size 200 than for samples of 
2,000 lineages under neutrality, when this estimator is expected 
to perform well (Fig. 6a). Even in the recent past, the difference 
is slight. This pattern extends to the other two estimators when 
applied under selection (Fig. 6e and f). But under neutrality, the 
waiting-time and lineages-remaining estimators perform ap
proximately equally regardless of sample size (Fig. 6b and c). 
The pattern observed for true trees also applies to estimated trees 
(Supplementary Figs. S4–S6, S14–S16).

Although we see little improvement in MSE when using true 
trees with samples of 2,000 relative to samples of 200 haplotypes, 
it is possible that large samples aid in marginal tree estimation, 
such that large samples produce better results with methods 
that can handle their size, not because the additional tips are 
helpful per se, but rather because the trees they produce are 
more nearly accurate. We do not find clear evidence of this possi
bility when increasing to 2,000 or 5,000 samples (Supplementary 
Figs. S27 and S28), but tsinfer+tsdate and ARG-Needle can 

accommodate samples much larger than this, which we do not 
explore.

Empirical data analysis
Edge and Coop (2019) analyzed data from the GBR (British) sub
sample of the 1000 Genomes project with respect to polygenic pre
dictions of height formed from effect sizes from either GIANT 
(Wood et al. 2014) or the UK Biobank (Neale Lab 2017). They found 
that GIANT effect sizes produced an impression of an increase in 
height over the last 60–90 ky in ancestors of the GBR individuals, 
but UK Biobank effect sizes produced no such effect, consistent 
with recent (at the time) evidence that GIANT effect sizes were 
subject to biases from population stratification, small at the level 
of individual loci but large when combined into a polygenic score 
(Berg et al. 2019; Sohail et al. 2019). We repeated the analyses of 
Edge and Coop using trees estimated by Relate, tsinfer 
+tsdate, and SINGER (supplementary text and Supplementary 
Figs. S29–S31). The results are qualitatively similar to those of 
Edge and Coop (2019) in each case.

Discussion
We studied the performance of a set of methods for estimating the 
history of population-mean PGS using estimated ARGs, with a par
ticular interest in the relative performance of different ARG esti
mation procedures. We used a broad range of methods 
appearing over the past decade—ARGweaver (Rasmussen et al. 

Fig. 5. Distribution of pairwise coalescence times from true and estimated trees at a locus undergoing strong selection. Histograms show times from 100 
trees with 300 tips each. Each tree (and flanking regions) was simulated assuming strong selection that increases the minor allele frequency from 0.3 to 
0.7 between 0.04 and 0.02 coalescent units in the past.
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2014), RENT+ (Mirzaei and Wu 2017), Relate (Speidel et al. 2019), 
tsinfer+tsdate (Kelleher et al. 2019; Wohns et al. 2022), 
ARG-Needle/ASMC-clust (Zhang et al. 2023), and SINGER (Deng 
et al. 2024)—that vary in their approaches, runtimes, and scalabil
ity. Previous work on these methods considered only estimated 
marginal trees from RENT+ (Edge and Coop 2019). We also bench
marked the estimated coalescence times emerging from these 
methods in general terms under neutrality and selection, provid
ing an update on the work of Brandt et al. (2022), including several 
ARG estimation procedures that are newly released since their 
work.

Many of the basic patterns we observed were consistent across 
all ARG or marginal tree estimation procedures, as well as being 
consistent with previous work. For example, regardless of the 
tree estimation procedure used, the resulting PGS-history esti
mates are more accurate under neutral evolution than under se
lection, and PGS estimates designed to work either under 
neutrality (“proportion-of-lineages”) or under selection (“waiting- 
time” or “lineages-remaining”) had the expected pattern of rela
tive performance.

At the same time, there were considerable differences in the ac
curacy of estimated population-mean PGS histories depending on 
the method used for marginal tree estimation. This is expected gi
ven the rapid development of ARG and marginal tree estimation 
methods in the past 10 years, which have resulted in increased 
scalability of several orders of magnitude (Brandt et al. 2022; 
Lewanski et al. 2024). However, bigger samples are not always bet
ter. In fact, the best performance overall from any set of estimated 
trees—whether measured in terms of mean squared error or con
fidence/credible interval coverage of the estimated PGS histories, 
or in terms of power in tests of natural selection—came from 
SINGER trees estimated with 200 haplotypes, rather than any of 
the tree estimation procedures that were capable of scaling to 
2,000 haplotypes. There were several other cases in which smaller 

samples fit by either RENT+ or ARGweaver outperformed trees es
timated from much larger samples.

The fact that trees estimated with much larger samples of hap
lotypes do not always outperform trees estimated with smaller 
samples may be counterintuitive. One part of the explanation is 
the tradeoff between accuracy and scalability in ARG estimation. 
ARG estimation is a difficult problem, and scalability can be 
achieved with simplifications that can reduce accuracy (Deng 
et al. 2021; Brandt et al. 2022, 2024; Deng et al. 2024). In line with 
this, ARGweaver and SINGER trees tend to feature more accurate 
branch lengths than methods that scale to larger samples 
(Brandt et al. 2022; Deng et al. 2024; Lewanski et al. 2024). The other 
important part of the explanation with respect to the estimators 
we explore here is that in large samples, coalescence initially hap
pens very fast. Because the coalescence rate is proportional to n

2

( 􏼁
, 

with n the number of lineages that have not yet coalesced, large 
samples imply large amounts of coalescence in the very recent 
past. As a result, even very large samples will be represented by 
a small number of lineages in the recent past (Griffiths 1984; 
Tavaré 1984; Slatkin and Rannala 1997; Volz et al. 2009; Frost 
and Volz 2010; Maruvka et al. 2011; Chen and Chen 2013; Jewett 
and Rosenberg 2014), and therefore increasing the sample size be
yond a few hundred haplotypes produces more precise allele- 
frequency estimation primarily in the very recent past. This is re
flected in Fig. 6, which shows that, even with the true trees, in
creasing the sample size from 200 to 2,000 does not clearly 
reduce the MSE of the Edge and Coop’s 2019 estimators in the 
scenarios in which they are each predicted to work well.

The ARG estimation methods we have examined have all been 
benchmarked previously. However, most of this benchmarking 
has been done with respect to general indicators of performance, 
such as the overall accuracy of local tree topologies (Rasmussen 
et al. 2014; Kelleher et al. 2019); a generalized Robinson–Foulds dis
tance for ARGs (Zhang et al. 2023), the distribution of distances 

Fig. 6. The MSE of the proportion-of-lineages (left column), waiting-time (middle column), and lineages-remaining estimators (right column) estimates 
from true trees with different sample sizes under neutrality (a–c) and directional selection (d–f).
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between topologically distinct local trees (Deng et al. 2021), and 
the distribution of pairwise coalescent times (Brandt et al. 2022; 
Deng et al. 2024). Although these general features are very import
ant, it is not always straightforward to predict from them which 
methods will perform best when applied to a specific downstream 
task. For the estimators we explore here, at a given locus, all of 
them can be computed from the sets of coalescence times on 
the derived-allele and ancestral-allele subtrees. Thus, for these 
estimators, it is important that branch lengths are estimated ac
curately, as the branch lengths determine the coalescence times. 
Topology does not matter per se, but it does matter in practice, in 
that certain kinds of topological errors make it unlikely that the 
estimated coalescence times on each background will be nearly 
accurate. In line with this, we observe that SINGER excels in 
both our benchmarks and in preserving monophyly among tips 
carrying the derived allele, as expected in an infinite-sites muta
tional model.

For other tasks, other specific features may assume outsize im
portance. For example, in estimating the expected genetic related
ness matrix (eGRM), the estimation of long coalescence times 
matters a great deal, since many pairs of lineages, and thus 
many entries of the eGRM, are related by these long times, leading 
Relate to outperform tsinfer+tsdate for this task (Fan et al. 
2022). In contrast, for some demographic inference problems, 
more recent coalescence times are more important, leading 
tsinfer+tsdate to outperform Relate (Fan et al. 2023). In add
ition to the specific features of the ARG that are important for a gi
ven downstream task, performance may vary according to the 
evolutionary scenario, e.g. the selection regime. In other words, 
there will not necessarily be an overall “best” method for ARG es
timation—when choosing a method for ARG inference in empiric
al work, the specific strengths and weaknesses of particular 
methods may be more important than general considerations 
about overall accuracy or scalability.

This study adds to others suggesting that estimated ARGs and 
the marginal trees they encode are useful tools for the study of 
complex traits (Edge and Coop 2019; Chen and Chiang 2021; 
Speidel et al. 2021; Stern et al. 2021; Link et al. 2023; Zhang et al. 
2023). As ARG estimation methods continue to improve in both ac
curacy and scalability, they will open new opportunities for map
ping genetic variants contributing to phenotypes, revealing 
polygenic adaptation, and exploring the relationship between nat
ural selection and population history.

Data availability
Code and the compiled version of mssel used in this article can be 
found at https://github.com/dandanpeng/ARG_Benchmarking.
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