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Without the ability to control or randomize environments (or genotypes), it is difficult
to determine the degree to which observed phenotypic differences between two groups
of individuals are due to genetic vs. environmental differences. However, some have
suggested that these concerns may be limited to pathological cases, and methods
have appeared that seem to give—directly or indirectly—some support to claims that
aggregate heritable variation within groups can be related to heritable variation among
groups. We consider three families of approaches: the “between-group heritability”
sometimes invoked in behavior genetics, the statistic PST used in empirical work
in evolutionary quantitative genetics, and methods based on variation in ancestry in
an admixed population, used in anthropological and statistical genetics. We take up
these examples to show mathematically that information on within-group genetic and
phenotypic information in the aggregate cannot separate among-group differences into
genetic and environmental components, and we provide simulation results that support
our claims. We discuss these results in terms of the long-running debate on this topic.

heritability | quantitative genetics | local adaptation | admixture

Understanding the causes and consequences of phenotypic variation is a central goal
of many fields of research. Over the last century, researchers in multiple fields have
attempted to make a study of the genetic and environmental variation within groups
of organisms and use that information to understand the genetic and environmental
sources of among-group differences. Such attempts have included suggestions that the
explanation of phenotypic differences within groups likely extends to differences among
groups (1), suggestions that observed differences may result from adaptation, for e.g.,
refs. 2–4, and observations that admixed individuals have phenotypes intermediate with
respect to members of source populations (5–8).

Richard Lewontin critiqued the first of these arguments in a set of well-known thought
experiments (9). In one example, Lewontin imagined two groups of corn plants. Within
each group, genotypes vary, but environmental conditions do not. Between groups,
there are no average genetic differences, but environmental conditions differ, with one
group in more favorable conditions than the other. In this situation, within-group
phenotypic variation is genetic (since environmental conditions are the same for all
members of the same group), while between-group variation is environmental (since there
are no average genetic differences between groups). Lewontin claimed that his thought
experiments showed that within-group heritability is irrelevant for determining the causes
of among-group differences. Lewontin’s argument was a response to Arthur Jensen, who
claimed that within-group heritability estimates suggested a genetic explanation for racial
differences in scholastic achievement (1).

In the decades since Lewontin wrote, several researchers have suggested that Lewontin’s
thought experiment represents a pathological special case. For example, in behavioral
genetics, DeFries (10), replying to both Lewontin and Jensen, built on earlier work by
Lush (11) to propose the “between-group heritability,” h2

B, aiming to quantify the relative
influence of genetic and environmental factors on phenotypic differences among groups.
DeFries argued that Lewontin’s thought experiments correspond to specially picked edge
cases and suggested that in other cases, h2

B provides a useful framework for thinking about
group difference.

Here, we show that in contrast to DeFries’ suggestion, the rationale underlying
Lewontin’s thought experiments is general and poses challenges for the interpretation of
h2
B whenever environmental differences among groups are not controlled or understood.

In particular, we show that, in line with Lewontin’s intuition, the heritabilities of
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phenotypic differences between groups are not constrained
by heritability within groups: Perfect knowledge of within-
group heritability provides no information about between-group
heritability. Crucially, even if the heritability of between-group
differences is estimated correctly, it leaves the direction of the
genetic and environmental components of phenotypic difference
unclear.

We also expand Lewontin’s critique to other approaches to
similar questions. In evolutionary biology, a statistic called PST
(12) is used to test whether phenotypic differences among groups
of wild organisms are consistent with neutral evolution or instead
might be better explained by natural selection. We show that
a parameter used in sensitivity analyses involving PST can be
understood as a function of h2

B. Using our results about h2
B and

their relationship to PST , we show the sensitivity analysis that is
typically undertaken when using PST to test for evidence of diver-
gent selection on a phenotype may be conservative, especially if
the phenotypic differentiation among groups is small. Moreover,
we highlight the difficulty of interpreting QST and PST in the
presence of environmental differences between groups, adding to
recent arguments by Harpak and Przeworski (13).

In genetic anthropology and statistical genetics, variation in
ancestry among admixed individuals is sometimes used to make
claims about the sources of trait variation among groups. For
example, correlations between an individual’s phenotype and
ancestry proportions may be taken as evidence that an observed
phenotypic difference between source populations is genetically
caused. As we show and has been mentioned previously as a
cautionary point, e.g., refs. 5, 7 and 14, the genetic effect of
ancestry may be confounded with environmental variation
affecting the phenotype. Approaches to heritability estimation
based on patterns of local ancestry in admixed populations (15)—
as opposed to global ancestry proportions—have also been used
to calibrate claims about the sources of group differences (16).
We show that the variation due to local ancestry that they leverage
has no clear relationship with between-group trait differences.

We discuss our results in terms of their shared origin in
gene-environment confounding and relate them to previous
claims (9, 17, 18). The complications we point out arise
under simple additive models, and the situation is only more
complicated in models with interactions among genetic or
environmental influences. We defer a brief consideration of gene-
by-environment interaction to the Discussion.

Between-Group Heritability Is Unconstrained
by Within-Group Heritability and
Underdetermines Genetic and Environmental
Differences among Groups

Lush (11) developed the between-group heritability, h2
B, to

quantify the relative influence of genetic and environmental
factors on a trait that differs among groups. Lush’s interest was in
heritability of differences among families of organisms subject to
artificial selection, with the goal of weighting family membership
appropriately when selecting organisms for breeding. Lush
worked in applications in which many aspects of among-group
variation in the environment could be controlled or randomized.

Consider a phenotype value Y formed from additive genetic
and environmental components, i.e., Yi = Gi + Ei for indi-
vidual i. It is standard to define the (narrow-sense) heritability
as h2 = VA/VP , where the additive genetic variance VA is the
variance of the genetic component (Gi), assuming no epistasis
or dominance, and VP is the variance of the phenotype. If

the sample is divided into groups, we can also define variance
proportions accounted for by group membership in either traits
themselves or in the genetic components of those traits. For
example, with respect to the phenotypic variance, we can define
t = �2

B/VP , with �2
B the between-group component of the

phenotypic variance (19). Call the analogous variance proportion
for the genetic variance r. Then, when groups are large, the
“between-group” heritability is

h2
B =

rVA

tVP
. [1]

Subsequently, DeFries (10) took up this formalism to argue
against the generality of Lewontin’s thought experiment. With
some algebra, he showed that the between-group heritability
is mathematically related to the within-group heritability, h2

W .
Specifically, defining r and t as in the previous paragraph, he
showed that

h2
B ≈ h2

W
(1− t)r
(1− r)t

, [2]

if the groups are large. DeFries claimed that Lewontin’s thought
experiments—one described above, and another involving inbred
lines reared in different environments—could be explained as
pathological cases in which either r or t is equal to 0, and suggested
that the relationship in Eq. 2 could be used to help interpret
observed group differences in other cases. He displayed a table
showing between-group heritabilities implied by various values
of r, conducting a sort of sensitivity analysis.

An immediate problem with application of Eq. 2 is that in the
absence of environmental controls, it is impossible to estimate
r, the proportion of the variance in the genetic component
of the trait accounted for by group membership, a point that
DeFries conveyed (10). Despite this, some researchers in behavior
genetics, including DeFries himself, took up DeFries’ formalism
and argued for its relevance for understanding variation among
groups of humans, generally in the context of discussions of
racial differences in IQ or scholastic achievement (20–22).
In particular, Jensen (23–25) repeatedly cited the definition
of between-group heritability as a linear function of within-
group heritability in arguments for the value of heritability
estimates for understanding sources of difference among groups.
Feldman and Lewontin (17) criticized the expression for h2

B
in Eq. 2 as tautological, in that r is better viewed as a term
that simply relates the definitions of h2

B and h2
W rather than

being an independently varying ingredient of a prediction of
h2
B from h2

W . Here, we concur with Feldman and Lewontin’s
interpretation, showing that, despite the appearance of Eq. 2, the
between-group heritability is unconstrained by the within-group
heritability. Thus, within-group heritability, on its own, provides
no information about between-group heritability (SI Appendix,
Text and sections S1.1–S1.2). We also show that even if r is
known, h2

B still underdetermines the group differences, such that
opposing interpretations of among-group variation are possible
under the same (known) r and h2

B.
In the specific case of two groups, the important quantities are

�G , the difference between the mean genetic values of the two
groups, and �E , the difference between the mean environmental
values of the two groups. Then, under a standard quantitative-
genetic model,

h2
B =

�2
G

(�G + �E)2 . [3]

Eq. 3 is useful to highlight several properties of between-group
heritability that generalize to cases with more than two groups.
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First, this expression for h2
B can be derived without reference

to within-group heritability or any quantities that contribute to
within-group heritability (SI Appendix, section S1.2), indicating
that even perfect knowledge of heritability within groups conveys
no information about genetic differences between groups without
further information or assumptions.

Second, it shows that the between-group heritability is not
bounded between 0 and 1: In particular, if the environmental
and genetic effects point in different directions, such that the
magnitude of the phenotypic deviation, � = �G + �E is smaller
than the magnitude of the genetic deviation, �G , then the
between-group heritability will be larger than 1. We illustrate
this in Fig. 1A, which shows the value of h2

B across a range of
genetic and environmental deviations. One striking feature of
the behavior of h2

B is that it rapidly approaches infinity when
�E ≈ −�G and that larger genetic deviations result in a larger
range of environmental deviations over which h2

B > 1.
Finally, the between-group heritability is uninformative about

the direction of environmental and genetic differences. For the
two-population case, this is reflected in the fact that given
knowledge of the phenotypic deviation, �, and the between-
group heritability, there are two possible directions of genetic

effects that are consistent with the data, namely �G = ±�
√
h2
B.

In SI Appendix, section S1.3, we show that with more than two
groups, there are an infinite number of possible configurations of
genetic and environmental deviations that are consistent with a
given h2

B. To give some intuition for this result, we start with an
alternative representation of the two-group scenario for groups
of equal size (Fig. 1B). The two axes indicate genetic deviations
of the two group means from the grand mean, ΔG,1 and ΔG,2.
Conditional on a given mean phenotypic difference between the
groups, �, obtaining a given value of h2

B requires that the sum
Δ2
G,1 +Δ2

G,2 equal a constant, solutions of which are represented
by the orange circle. Additionally, because ΔG,1 and ΔG,2 are
deviations from the grand mean, they must sum to zero, giving
the green line corresponding to ΔG,1 + ΔG,2 = 0. The two
purple points where the line and circle intersect represent the

two configurations of the between-group genetic difference that
lead to the same value of h2

B.
With a larger number of groups, the situation is entirely

analogous, only in higher dimension. Fig. 1C shows a schematic
of the three-group case. The axes again represent the genetic
deviations of each group from the grand mean. The combinations
of genetic deviations that result in the same h2

B (conditional on
phenotypic differences) are now an orange sphere, rather than a
circle. And the genetic deviations from the grand mean consistent
with the condition that all genetic deviations sum to zero fall on
the blue plane (rather than a line). The intersection of the sphere
and the plane, shown in purple, gives a circle of genetic deviations
on which all have the same h2

B while also being consistent as
deviations from a grand mean. With more than three groups, the
sphere becomes a hypersphere, the plane becomes a hyperplane,
and the same basic relationships hold.

Within-group heritabilities, on their own, provide no infor-
mation about the causes of between-group differences, in part
because any configuration of group means for the genetic contri-
butions to the trait is possible under some value of r. The value
of r itself can be studied under evolutionary models, and in fact,
it is closely related to the quantity QST studied in evolutionary
quantitative genetics, which we consider in the next section.

PST Analyses Can Understate or Overstate the
Possibilities for Adaptive Differentiation
The statistic QST is a measure of the genetic component of
trait variation among populations. For diploids, in terms of the
variance proportion r discussed in the previous section, it is
equal to QST = r/(2 − r) (26). When traits evolve neutrally,
QST is expected to be equal to FST at putatively neutral sites,
which measures the genetic variation among populations (27).
Thus, by testing whether QST is significantly greater than FST ,
it is possible to determine whether there is more genetically
explained trait variation among populations than expected under
neutral evolution (28–31). Such a pattern is consistent with
divergent selection causing trait differences among groups. On
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Fig. 1. Properties of h2
B . (A) The behavior of h2

B in two populations for different values of the genetic deviation �G and environmental deviation �E . Each curve
corresponds to a different genetic deviation. (B) Two genetic deviations that are consistent with an observed h2

B with two populations. The circle shows all
genetic deviations that hold the genetic variance constant, while the line shows all genetic deviations that sum to 0. The intersection of the line and circle shows
the genetic deviations that are consistent with a given h2

B . (C) An infinite number of genetic deviations consistent with an observed h2
B with three populations.

The sphere shows all genetic deviations that hold the genetic variance constant, while the plane shows all genetic deviations that result in the genetic deviations
summing to 0. The intersection of the sphere and the plane, indicated by the purple circle, contains the values of genetic deviations from the grand mean that
will hold h2

B constant.
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the other hand, lower-than-expected values of QST may be taken
as evidence of stabilizing selection on a shared optimum.

However, to estimate QST requires arduous common-garden
experiments that eliminate environmental confounds. Such
common-garden experiments may be difficult or impossible
to carry out in some organisms. Thus, it is common in the
literature to use a version of QST calculated from phenotypes
measured on wild organisms rather than organisms raised in
a common garden for e.g., refs. 2–4. This statistic computed
from observations of wild organisms, often labeled PST , is a
function of the between-population phenotypic variance, �2

B, the
within-population phenotypic variance,�2

W , as well as parameters
a and b, which are interpreted as determining the fraction of
between- and within-population phenotypic variance that is due
to genetics, respectively. For diploids,

PST =
a�2

B
a�2

B + 2b�2
W

=
c�2

B
c�2

B + 2�2
W
,

where the parameter c = a/b. Because �2
B and �2

W can
be estimated from purely phenotypic data but c cannot, it
is common practice in the literature to explore values of c
between 0 and 1, seemingly motivated by a suggestion that the
genetic component of between-population differences must be
proportionally smaller than the genetic component of within-
population differences. A well-appreciated point is that if the
choice of c is too large, then PST analysis can be anticonservative,
leading to spurious inferences of divergent selection. In effect,
environmental differences are mistaken for genetic ones, leading
to a false rejection of neutral evolution. In Materials andMethods,
we show that the coefficients for PST are a = h2

B, the between-
group heritability, and b = h2

W , the within-group heritability, so
that the correct value of c to obtain PST = QST is

c∗ =
h2
B

h2
W

. [4]

As shown above, h2
B is unconstrained by any measure of genetic

and environmental variability within groups. Moreover, because
h2
B is not constrained to be between 0 and 1, a sensitivity analysis

that explores values of c between 0 and 1 may lead to extremely
conservative tests for divergent selection. Finally, because both
QST and PST depend on the variance of between-population
means, any evolutionary scenarios that produce identical h2

B will
also produce identical QST and PST , indicating that knowledge
of PST or QST is not sufficient for disentangling the directions
of environmental and genetic effects.

Simulated Example: Evolution in the Face of an Environmental
and Optimum Shift. To demonstrate the impact of our results
on evolutionary analyses, we performed population-genetic
simulations using SLiM (32). In particular, we developed a
model in which very different underlying evolutionary forces
result in identical h2

B and QST , indicating that these statistics are
insufficient for characterizing evolutionary history and may be
misleading in some circumstances. The scenario we considered is
outlined in Fig. 2 A and B and inspired by a recent perspective
by Harpak and Przeworski (13): A population evolves with a trait
under stabilizing selection until a population split. In one of the

populations, the environment and stabilizing selection remain
constant; however, in the other population, the environment
shifts, along with the optimum trait value. We explore two
scenarios: one in which the environment shifts in the same
direction as the fitness optimum for the trait (“concordant,”
panel A), and one in which they shift in opposite directions
(“discordant,” panel B). We use the same optimum shift in both
cases, so that the simulations result in a phenotypic difference of
� = 1, and set the environmental shift to maintain h2

B = 9 at
equilibrium.

Fig. 2 C and D show the evolution of the difference in
phenotypic and genotypic values between the two populations
over the course of adaptation. In both directions of environmental
shift, the phenotypic differences converge to �P = 1, consistent
with identical optimum shifts in both situations. However, the
genetic differences display opposite dynamics, depending on the
direction of the environmental shift. If the environmental shift
is in the same direction as the optimum shift (panel C ), then
the adapting population will have a mean genetic value that
is less than that of the population that did not experience an
environmental shift; in the other scenario (panel D), the adapting
population will have a mean genetic contribution to the trait
that is greater than the population that did not experience a
shift. Thus, to compare the impact of stabilizing selection with
environmental change, both the common-garden genetic values
and the in situ phenotypic values are necessary.

Fig. 2 E and F show that h2
B ≈ 9 at equilibrium by

construction. However, the two scenarios approach that value in
different ways. When the environment and optimum shift in the
same direction, the average approach to equilibrium is monotonic
and smooth (panel E). However, when the optimum and
environment shift in opposite directions, h2

B becomes large when
the phenotypic difference between the populations is near 0, and
comes back down from infinity to settle at the equilibrium value
(panel F ). It is also much noisier across simulation replicates, as
evidenced by the middle 80% of the distribution spanning three
orders of magnitude. This is mostly due to the denominator being
near zero for a large portion of the simulations (SI Appendix,
Fig. S1). On the other hand, the long-term expected value of h2

W
is constant across the simulations and identical regardless of the
direction of the environmental shift, as expected, because within-
population variability will not change when there is an optimum
shift. As emphasized in the previous section, knowledge of h2

B at
any time during adaptation is not sufficient to characterize the
direction in which selective forces are acting.

Finally, we examined PST calculations and their impact on
the sensitivity of a test to reject neutral trait evolution in these
scenarios. In each simulation, we computed PST across an array of
values of c and also computed the true QST . Fig. 3 A and B show
the behavior of the statistics and the test of neutral evolution,
respectively, when the environment and optimum trait value
shift in the same direction. Here, the behavior of PST for a
given value of c is monotonic, but at different points during
the course of adaptation, the same value of c can produce either
a conservative or anti-conservative estimate of QST from PST .
Early in adaptation, there should be very little genetic signal of
adaptation, and QST rejects the null hypothesis approximately
5% of the time at the 5% significance threshold, showing that
the test is well calibrated. However, because the environmental
shift results in large phenotypic differences, every PST test
initially results in high false positive detection of adaptation.
Subsequently, as adaptation proceeds, QST detects adaptation
with high power, although it loses power after approximately 300
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A C E

FDB

Fig. 2. Simulation of a evolutionary scenarios. (A and B) Description of the evolutionary scenarios. A population evolves until it splits into two subpopulations
of equal size. At the time of split, one of the subpopulations experiences both an environmental shift (in blue) and an optimum shift (red). The environmental
shift may either be in the same direction as the optimum shift (concordant, panel A) or in an opposite direction (discordant, panel B). (C and D) Evolution of
genetic and phenotypic values over time. The horizontal axis shows the number of generations since the split, and the vertical axis shows the value of either
the genetic difference between the two populations or the phenotypic difference between the two populations. Concordant shifts are shown in Panel (C),
discordant shifts in panel (D). (E and F ) Evolution of between- and within-population heritability. The horizontal axis indicates time since the population split,
and the vertical axis shows the value of different summaries of phenotypic variation, h2

B and h2
W ; median values are shown with a solid line, and the shaded

band indicates the range of values between the 10th and 90th percentiles. Concordant shifts are shown in panel (E), discordant shifts in panel (F ).

generations, because the neutral divergence between populations
increases substantially. However, for values of c < 1, as typically
explored in the literature, PST quickly becomes smaller than
QST , and tests using PST fail to reject the null hypothesis
significantly earlier into adaptation. Fig. 3 C and D show that
when the environment and optimum shift in opposite directions,
the behavior of QST remains monotonic, but the behavior of
PST for a given c becomes nonmonotonic, reaching a minimum
when the phenotypic difference between populations is small
and then increasing again. This results in complicated behavior
of the PST test in comparison with the QST test, in which PST
can go from anti-conservative to conservative, and then back to
anti-conservative. Finally, the trajectories of QST are identical
regardless of the direction of the environmental shift, in line with
the fact that knowledge ofQST is not informative of the direction
of environmental and genetic shifts.

Trait Correlations with Global Ancestry or
Genome-Wide Local-Ancestry Sharing Do
Not reveal the Causes of Between-Group
Difference
Global Ancestry. We have seen that efforts toward quantifying
the genetic contribution to differentiation among groups can be

confounded by environmental variation. Some have suggested
that admixed individuals present opportunities to resolve this
difficulty and estimate the genetic component of between-group
differences. One suggested approach is to examine the correlation
between trait values and global ancestry proportions among
admixed individuals (5–8, 14, 33). If trait value is positively
correlated with the fraction of global ancestry from source
population A, then that correlation might be taken as evidence
suggesting population A is genetically predisposed to larger trait
values than other source populations contributing to the admixed
population.

However, this approach depends strongly on assumptions
about the relationship between ancestry and environmental
effects. We show in SI Appendix, section S.2.1.3 that the expected
phenotype of an individual with ancestry fraction �i from source
population 2 in a two-source admixture is

E(Yi | �i) = �1 + �i�G + hE(�),

where �i is the mean genetic contribution to the trait in
population i and hE(�) is a function that expresses how the
conditional expectation of the environmental effect depends on
an individual’s global ancestry fraction. If the environmental and
genetic effects of global ancestry are confounded in the admixed
population (i.e., if the correlation of Y and hE(�) is nonzero),
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Fig. 3. Evolution of PST and QST . In the Top row, the horizontal axis shows the time since the population split, and the vertical axis shows the value of either
QST or PST , with the different colors indicating different values for the choice of c in the PST formula. In the Bottom row, the horizontal axis shows the time
since the population split, and the vertical axis shows the fraction of tests in which the null hypothesis of neutral evolution is rejected at the 5% level because
QST > FST . The colors are the same as the top row. (A and B) The environment and optimum shifts are concordant. (C and D) The environment and optimum
shifts are discordant.

then it may be impossible to recover �G . As a simple example,
consider a case in which individuals with � = 0 experience
environmental effects with expectation E1, individuals with
� = 1 experience environmental effects with expectation E2, and
there is a linear gradient between those extremes for individuals of
intermediate admixture fraction. If we again define the difference
between mean environmental effects to be, �E = E2 − E1, then
hE(�) = E1 + ��E , and

E(Yi | �) = �1 + E1 + �(�G + �E).

Under this formulation, it would be possible to use linear
regression to estimate the slope (in terms of ancestry proportion
�) and intercept given a sample of admixed individuals with
measured admixture fractions and phenotypes, but the resulting
slope would provide information only about the sum of the
genetic and environmental effects of global ancestry, not their
relative contribution or even their direction.

A similar approach might be applied to admixed siblings, where
the correlation with trait value is computed only with respect
to variation in realized global ancestry between full siblings,
who have the same expected global ancestry proportions on
the autosomes. Limiting to within-sibship comparisons would
remove some confounds of global ancestry proportion, but
it would not exclude environmentally mediated phenotypic
differences caused by variation in global ancestry. For example,
in African Americans, colorism (34) might lead to systematically

different treatment as a function of ancestry fraction, even within
sets of full siblings.

Local-Ancestry Heritability. Although variation in global an-
cestry may be confounded with environmental variation, one
might imagine that variation in the genome-wide sharing of local
ancestry segments could provide a way forward in identifying the
genetic vs. environmental basis of among-group difference.

Zaitlen et al. (15) proposed a novel estimator of heritability ap-
plicable to individuals from admixed populations. The estimator
works on principles similar to SNP heritability estimators (35),
such as implemented in GCTA (36). SNP heritability methods
work by measuring the degree to which aggregate sharing of
alleles at genotyped SNPs among people who are not closely
related is correlated with similarity on a phenotype. A strength
of SNP heritability methods is that they avoid potential biases
stemming from environmental influences shared among closely
related people. A weakness is that they cannot inform about
contributions to heritability from variants that are not well
tagged by SNPs included in the genetic relatedness matrix, in
particular rare variants. In local-ancestry heritability estimates,
rather than examining shared SNP genotypes, one examines the
sharing of segments of local ancestry in an admixed population.
For example, consider pairs of individuals from an admixed
population formed from two source populations, where both
members of all pairs have 50% of their ancestry from each source

6 of 10 https://doi.org/10.1073/pnas.2319496121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
6.

21
9.

78
.1

4 
on

 M
ar

ch
 1

5,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

76
.2

19
.7

8.
14

.



population. If a trait is heritable, then a pair whose genetic
segments from source population 1 fall in exactly the same
locations might be expected to be slightly more phenotypically
similar than another pair who share no local ancestry segments.
Heritability estimates based on local ancestry offer the potential to
address one of the main issues facing SNP heritability estimates,
since segments of local ancestry tag both common and rare
variants. The resulting estimate has also been taken as a proxy
for c in PST analysis (16), though Zaitlen et al. (15) made
no claims about revealing the causes of phenotypic differences
among source populations.

Despite the promise of the approach, heritability estimates
based on local ancestry face their own challenges. Specifically,
directional or stabilizing selection in the history of the source
populations can lead to upward or downward biases in heritability
estimates, respectively (37). In SI Appendix, section S2, we
consider this problem and describe a related one that, in a
pathological worst case, can lead to heritability estimates near 0
when the true heritability is 1. This problem is most pronounced
when the trait under consideration has experienced selection
in the source populations, a scenario that Zaitlen et al. (15)
recognized as potentially problematic for their estimator.

In SI Appendix, Text and section S2, we decompose the genetic
variation for a phenotype in a population having experienced
several generations of admixture between two source populations
into a component due to variation in global ancestry, a compo-
nent due to the placement of local ancestry segments conditional
on global ancestry, and a component due to randomness in
genotype conditional on local ancestry. The variance component
principally used by local-ancestry heritability estimation is the
variance due to placement of local ancestry segments, conditional
on global ancestry,

(E(�)(1− E(�))− Var(�))
(2`)2

2`− 1
var(�j(p2j − p1j)). [5]

Here, � is a random variable representing global ancestry fraction
from source population 2, ` is the number of (unlinked) loci
considered, �j is the effect size of an effect allele at locus j, p1j
and p2j are frequencies of the effect allele in populations 1 and 2,
and var() indicates the population variance.

Under this model, the difference in genetic means between the
source populations is

�G = 2
∑
j

�j(p2j − p1j)

= 2`�j(p2j − p1j),

where the overbar denotes the population mean. However, the
expression in Eq. 5 does not provide a means to estimate �G ,
since the average of the quantity �j(p2j − p1j) does not appear
in Eq. 5; only its variance does. The mean value of �j(p2j − p1j)
is not constrained by the variance of the �j(p2j − p1j) values.
The approach of Zaitlen et al. (15) can be applied with or
without a fixed effect for global ancestry fraction. However,
comparing these results does not reveal the genetic component of
the between-group difference if there may also be environmental
effects associated with ancestry fraction, for the reasons discussed
in the previous subsection (SI Appendix, section S2.3).

Discussion
We showed that knowledge of the heritability of within-
population differences does not constrain the heritability of

between-population differences at all, as discussed by Lewontin
(9). Our results establish Lewontin’s interpretation generally.

Moreover, even if the between-group heritability were es-
timable, it is consistent with potentially infinitely many con-
figurations of genetic differences among populations and cannot
be used to infer the direction(s) of group differences in genetic
contributions to a trait. This second point is especially important.
Evolutionary models may be able to identify plausible ranges,
under given assumptions, for the variance proportion of the
genetic component of the trait accounted for by group mem-
bership, r, since r is a function of QST , which is studied in
evolutionary quantitative genetics. However, even if r (and thus
between-group heritability, which has r as a key ingredient) can
be constrained somewhat, the causes of group difference remain
ambiguous without a clear understanding of environmental
differences among groups and their relevance for the trait. This
point was also anticipated by a verbal argument, this one by
philosopher Ned Block (18).

Although our analysis of h2
B was partially anticipated by

Lewontin et al. (9, 38–41), the existence of h2
B has been

invoked for decades, up to the present, to suggest that within-
group heritability is informative about among-group differences
(20–25). As one example, Warne (22) writes “The existence of the
equation [relating h2

B to h2
W ] alone shows that the claim that ‘the

genetic basis of the difference between two populations bears no
logical or empirical relation to the heritability within populations’
(Lewontin, 1970, p. 7) is incorrect.” Our work clarifies that
Lewontin’s claim is correct in general and not only in the special
cases he used for illustration. The relationship between h2

W and
h2
B is rather like the relationship between a random variable’s

expectation and its variance. One can write the variance as a
function of the expectation (i.e., Var(X ) = E(X 2) − E(X )2),
but unless further assumptions are made, knowledge of the
expectation alone gives no information about the variance.
Roseman and Bird (42) recently arrived at a similar position,
concluding that there is no relationship between h2

B and h2
W

under an additive genetic model...unless evolutionarily explicit
models are used to relate them.

These findings have important implications not just for
quantifying the genetic component of among-group differences,
but also for methods of detecting genetic adaptation using
phenotypic data from multiple populations. As we showed, the
phenotypic analogue of QST , called PST , is not constrained
by within-population heritability. In fact, because the between-
population heritability is not bounded from above by 1, common
sensitivity analyses, which assume that the between-population
component of genetic differentiation is smaller than the within-
population component, can be very conservative. PST has been
criticized (12, 43) and is often treated cautiously as a result.
However, to our knowledge, the fact that c can be much larger
than 1 is not widely understood, nor is the fact that it can achieve
very large values in realistic evolutionary scenarios.

The same fundamental problem that plagues h2
B and PST

also prevents the separation of genetic and environmental
components of differences among source populations via study
of ancestry variation in admixed populations. Variation among
admixed people in global ancestry proportions may be associated
with both genetic and environmental effects, leading to con-
founding. Variation among admixed people in the sharing of
local ancestry segments provides information that is sometimes
useful in heritability estimation, but the resulting estimates do
not provide a way forward for estimating differences in the
genetic contribution to the trait among source populations, since
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local-ancestry heritability estimates depend principally on a
variance component that is not closely related to the genetic
contribution to differences among groups.

All of the phenomena we have discussed so far arise under
the simplest possible models, in which phenotypes arise via
additive influence of genotype and environment. In the presence
of gene-by-environment interaction, the role of genetic factors in
explaining group differences itself depends on the environment in
which the groups exist. Even careful control of the environment
then provides only a partial picture, since it tells us only about
the genetic contribution to group difference in the environment
studied, which may well change or reverse in a different one
(38). For example, Chakraborty and Weiss (14) studied diabetes
incidence in admixed populations with varying proportions of
European or Native American ancestries. The increased incidence
of diabetes with more Native American ancestry that they
observed ran against what seemed to them the most obvious
environmental risk factor, the degree to which a group’s diet was
westernized. However, as they noted, “earlier prevalence studies
did not reveal a high occurrence of [diabetes] in pre-World War
II populations of Amerindians” suggesting the inadequacy of a
purely genetic model, and a potential role for gene-environment
interaction in explaining the observed group differences.

Clearly, our results do not prevent the identification of
specific genetic or environmental factors that might contribute
to group differences, in the sense that, if their influence were
removed, the magnitude or direction of a group difference
might change. For example, in domestic dogs and related canid
species, a specific variant in IGF-1 appears to be an important
factor in explaining body-size differences (44). This variant is
associated with body size within and across species and breeds,
in a broad set of different genetic backgrounds and different
environments, and it plausibly has a regulatory function that
relates it to body size. On the environmental side, exposure to
known toxins such as air pollution can lead to health problems
such as asthma or some cancers, and exposure is sometimes
stratified by race or socioeconomic status, plausibly contributing
to health disparities (45, 46). The problems we identify arise when
simplistic assumptions are made about aggregate contributions
of genetic or environmental differences to group differences,
particularly when the sources of variation in the phenotype are
not understood. In some cases, a single causal factor might be
identified, such as a genotype that causes a Mendelian disease,
although even such seemingly straightforward cases may be more
complicated and susceptible to environmental modification, as in
the case of phenylketonuria (47). But when the causes of variation
in a phenotype are poorly understood and most phenotypic
variation is unexplained, projection on the basis of known factors
is particularly difficult. For example, in humans, attempts to
explain group differences in terms of polygenic scores—predicted
trait values calculated from genotypes, which are typically noisy
predictions—are fraught with difficulties (48, 49).

When it is possible, the best solution to the problems we
point out is careful control of the environment. Common-garden
observations support the original uses of h2

B by Lush (11) and
applications of QST . Departures from the common garden are
unavoidable for studies of humans and of some wild organisms.
At the same time, if the environment is not controlled, then the
sources of among-group differences become ambiguous, and this
ambiguity cannot be resolved by study of within-group variation
in aggregate.

If control of the environment is not possible, it may sometimes
be possible to observe that a phenotypic difference is persistent
across a broad set of environments that vary in all dimensions

that might be relevant for the trait. With respect to the methods
discussed here, they may allow for firmer conclusions if the
environmental sources of trait variation are understood and
measured or modeled, even if they cannot be controlled. In
practice, it is often difficult to make such conclusions—the
relevant environmental variables are unknown, and it is difficult
to tell whether they have been explored. In fact, Lewontin (9)
contained a third thought experiment to this effect. In the same
case as described in the introduction, with genetic variation
within groups but no genetic variation between groups raised
in different soils, Lewontin asks us to imagine a chemist making
a survey of the soils. The chemist finds a large difference in nitrate
concentrations, but correcting the difference only partially lessens
the phenotypic difference between the groups, leading researchers
to conclude incorrectly that the remaining phenotypic difference
is genetic. In fact, a much subtler difference in zinc levels is “the
real culprit.” This thought experiment was inspired by the long
delay in the discovery of the importance of trace minerals for plant
development, “because ordinary laboratory glassware will leach
out enough of many trace elements to let plants grow normally.”
Lewontin asked rhetorically, “Should educational psychologists
study plant physiology?” We might ask today how we can come
to understand the traits we care about well enough to distinguish
nitrate cases from zinc cases.

Materials and Methods
A Linear Model of Quantitative Traits within and between groups. We
model the phenotype of an individual j in population i as the sum of genetic
and environmental components, G and �, respectively,

Yij = Gi + G̃ij + �i + �̃ij,

where G̃ij = Gij − Gi and �̃ij = �ij − �i are the genetic and environmental
deviations, respectively, of individual j from the mean genetic and environmental
values for group i. This model is applicable to a trait regardless of genetic
architecture, as long as there are no gene-by-environment interactions.

Computing the between- and Within-Group Heritability. In terms of the
linear model formulation, the definition of the between-group heritability is

h2
B =

Var(Gi)
Var(Gi + �i)

and the within-group heritability is

h2
W =

Var(G̃ij)

Var(G̃ij + �̃ij)
.

InSI Appendix, section S1.2, we show that with these definitions, one can recover
the relationship between h2

B and h2
W derived by DeFries (10).

The Parameters Used in PST . In terms of the linear model formulation, for
diploids, the definition of QST is

QST =
Var(Gi)

Var(Gi) + 2Var(G̃ij)
,

and the definition of PST is

PST =
aVar(Gi + �i)

aVar(Gi + �i) + 2bVar(G̃ij + �̃ij)
.

In terms of the variance proportions t and r in DeFries’ expression for between-
group heritability, it follows that QST = r/(2− r).
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Table 1. Simulation parameters
Scenario Concordant Discordant

N 500 500
Mutation rate 10−7 10−7

Recombination rate 10−5 10−5

Mutation distribution N(0,.005) N(0,.005)
Baseline environment distribution N(0,2) N(0,2)
Baseline selection kernel N(0,100) N(0,100)
Time of population split 20,000 20,000
Optimum shift +1 +1
Environment shift +4 -2

For PST = QST we need

aVar(Gi + �i) = Var(Gi)

H⇒ a =
Var(Gi)

Var(Gi + �i)

= h2
B

and similarly

bVar(G̃ij + �̃ij) = Var(G̃ij)

H⇒ b =
Var(G̃ij)

Var(G̃ij + �̃ij)

= h2
W .

Stabilizing Selection Simulations. We simulated phenotypes under selection
using SLiM (32). In all simulations, an initial population of 500 diploid
individuals with genomes of 1,000,000 positions, with a mutation rate of
10−7 per generation and a recombination rate of 10−5 (to approximate free
recombination). New mutations have an effect on the trait drawn from a Normal

(� = 0,�2 = 0.005) distribution. Environmental effects are Gaussian with
variance 2. We impose Gaussian stabilizing selection with an optimum at 0
and variance of 100. After 20,000 generations, the populations split into two
populations of 20,000 diploid individuals. We then consider two scenarios.
In both scenarios, one subpopulation maintains an optimum at 0, while the
other experiences an optimum shift to an optimum at 1. In one scenario, the
environment shifts to a mean of−2, in the opposite direction of the optimum
shift. In the other scenario, the environment shifts to +4, in the same direction
as the optimum shift. The simulations are run for 500 generations after the
population split. See Table 1 for a summary of simulation parameters. For each
scenario, we conducted 500 replicate simulations.

Testing for Adaptation Using the Lewontin–Krakauer distribution. To
test for adaptation in our simulations by comparing PST or QST to FST , we
first computed ratio-of-averages genome-wide FST (as implemented in SLiM’s
calc_Fst function) on the basis of neutral markers that were not associated with
the trait in the simulations. The Lewontin–Krakauer (50) test uses the statistic

TLK =
n− 1
FST

QST ,

which has�2 distribution withn−1 degrees of freedom, wheren is the number
of demes (in our case, n = 2). For the tests using PST , we substituted PST for
QST in the definition of the Lewontin–Krakauer test statistic. We note that we
computed the variance in group means without using Bessel’s correction, as
shown by Weaver (51) to be the correct formula for Nei’s FST (52).

Data, Materials, and Software Availability. Code used in this paper can be
found at https://github.com/Schraiber/heritability (53).
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