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Abstract

In both statistical genetics and phylogenetics, a major goal is to identify correlations between

genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2

fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The

disconnect between their respective approaches is becoming untenable as questions in

medicine, conservation biology, and evolutionary biology increasingly rely on integrating

data from within and among species, and once-clear conceptual divisions are becoming

increasingly blurred. To help bridge this divide, we lay out a general model describing the

covariance between the genetic contributions to the quantitative phenotypes of different

individuals. Taking this approach shows that standard models in both statistical genetics

(e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology

(e.g., phylogenetic regression) can be interpreted as special cases of this more general

quantitative-genetic model. The fact that these models share the same core architecture

means that we can build a unified understanding of the strengths and limitations of different

methods for controlling for genetic structure when testing for associations. We develop intui-

tion for why and when spurious correlations may occur analytically and conduct population-

genetic and phylogenetic simulations of quantitative traits. The structural similarity of prob-

lems in statistical genetics and phylogenetics enables us to take methodological advances

from one field and apply them in the other. We demonstrate by showing how a standard

GWAS technique—including both the genetic relatedness matrix (GRM) as well as its lead-

ing eigenvectors, corresponding to the principal components of the genotype matrix, in a

regression model—can mitigate spurious correlations in phylogenetic analyses. As a case

study, we re-examine an analysis testing for coevolution of expression levels between

genes across a fungal phylogeny and show that including eigenvectors of the covariance

matrix as covariates decreases the false positive rate while simultaneously increasing the

true positive rate. More generally, this work provides a foundation for more integrative

approaches for understanding the genetic architecture of phenotypes and how evolutionary

processes shape it.
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1 Introduction

Statistical genetics and phylogenetic comparative biology share the goal of identifying correla-

tions between features of individuals (or populations) that share ancestry. In the case of statisti-

cal genetics, researchers search for causal genetic variants underlying a phenotype of interest,

whereas in phylogenetic comparative biology, researchers are typically interested in testing for

associations among phenotypes or between a phenotype and an environmental variable. In

both cases, these tests are designed to isolate the influence of a focal variable from that of many

potential confounding variables. But despite the shared high-level goal, the statistical traditions

in these 2 fields have developed largely separately, and—at least superficially—do not resemble

each other. Moreover, researchers in these 2 statistical traditions may have different under-

standings of the nature of the problems they are trying to solve.

In statistical genetics, phenotypes and genotypes can be spuriously associated because of

confounding due to population structure [1–4] or assortative mating [5,6]. For example, in

their famous “chopsticks” thought experiment, Lander and Schork [1] pointed out that genetic

variants that have drifted to higher frequency in subpopulations in which chopsticks are fre-

quently used will appear, in a broad sample, to be associated with individual ability to use

chopsticks, even though the association is due to cultural confounding and not to genetic cau-

sation. Confounding can also be genetic [7]—if a genetic variant that changes a phenotype is

more common in one population than others, leading to differences in average phenotype

among populations, then other, noncausal variants that have drifted to relatively high fre-

quency in this population may appear to be associated with the phenotype in a broad sample.

In addition to affecting genome-wide association study (GWAS) results, such confounding

can affect heritability estimation [8,9], genetic correlation estimates [10,11], and prediction of

phenotypes from polygenic scores [12–16]. Although many candidate solutions have been

offered [17–21], the 2 most common approaches involve adjusting for shared ancestry using

the genetic relatedness matrix (GRM, [22]), either by incorporating individual values on the

first several eigenvectors of this matrix (i.e., the principal components of the genotype matrix)

as fixed effects [23], or by modeling covariance among individuals attributable to genome-

wide relatedness in a linear mixed model (LMM, [24–28]).

In phylogenetic comparative biology, researchers typically aim to control for the similarity

of related species by incorporating the species tree into the analysis. There has been a great

deal of controversy as to what the underlying goals and implicit assumptions of phylogenetic

comparative methods (PCMs) are (see for examples refs. [29–36]). But broadly speaking, it

seems that many researchers understand the goal of PCMs to be avoiding “phylogenetic pseu-

doreplication” [37]—mistaking similarity due to shared phylogenetic history for similarity due

to independent evolutionary events [34]. This is most commonly done by conducting a stan-

dard regression, using either generalized least squares (GLSs) or a generalized linear mixed

model (GLMM), but including the expected covariance structure owing to the phylogeny [38–

42]. (Throughout this paper, we do not make a distinction between phylogenetic GLS and phy-

logenetic GLMM models. We refer to them generically by the shorthand GLS for the general

case and PGLS for cases where the phylogenetic variance-covariance matrix is used.) This

covariance structure reflects both the relatedness of species and the expected distribution of

phenotypes under a model of phenotypic evolution [43,44], such as a Brownian motion [45]

and related alternatives [44]. (The “phylogenetically independent contrasts” method [46],

which ushered in modern PCMs, is statistically equivalent to a PGLS model assuming a

Brownian model [47].)

In recent years, however, signs have emerged that these 2 subfields may benefit from closer

conversation, as emerging approaches in both statistical genetics and phylogenetics encounter
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questions that call for the other subfield’s expertise. For example, in humans, evolutionarily

conserved sequences are enriched for trait and disease heritability [48,49], and conservation

across related species can be used to prioritize medically relevant variants in fine mapping

[50,51] and rare-variant association studies [52,53]. Similarly, multispecies alignments are

now used by conservation geneticists to estimate the fitness effects of mutations in wild popu-

lations [54,55] and by plant breeders to aid in genomic selection [56,57]. And there is growing

interest in using estimated ancestral recombination graphs (ARGs) to perform explicitly tree-

based versions of QTL mapping and complex trait analysis [58,59]. From the phylogenetics

side, researchers are increasingly employing GWAS-like approaches (“PhyloG2P” methods;

[60]) for mapping phenotypes of interest for which the variation primarily segregates among

rather than within species.

Such emerging connections suggest that it would be beneficial to understand the ways in

which statistical genetics and phylogenetic comparative biology relate to each other. Here, we

show that methods in these 2 fields can be understood as closely related special cases of the

same more general model. In Section 2.1, we start from first principles and develop a general

statistical model for investigating associations between focal variables while controlling for

shared ancestry. Then, in Section 2.2, we outline how this general model specializes to the set-

tings of GWAS by assuming genotypes and effect sizes are conditionally independent (Section

2.2.1); animal breeding by assuming known pedigree relationships (Section 2.2.2); expected

relatedness given a fixed coalescent tree (Section 2.2.3); and phylogenetics given a fixed species

tree (Section 2.2.4). Next, in Section 2.3, we provide both theoretical (Section 2.3.1) and simu-

lation-based (Section 2.3.2) demonstrations of when and how different commonly used

approaches to controlling the effects of population structure succeed and fail on different time-

scales. Finally, in Section 2.4 we show an application of a commonly used tool of statistical

genetics in a phylogenetic setting to demonstrate the utility of understanding the connections

between these methodological traditions.

2 Results

2.1. A standard model for a quantitative trait

We assume a standard model in which many genetic factors of small effect influence a pheno-

type in an additive way—that is, there is no dominance or interaction among genetic loci (epis-

tasis). Denoting by βl the additive effect size of the variant at the lth locus and Gil the genotype

of the ith individual at the lth locus, under this model,

Ai ¼
X

l
blGil; ð1Þ

where Ai is the genetic component of the phenotype of individual i, sometimes called a genetic

value or breeding value. We then express the phenotype of individual i, denoted Yi, as the sum

of the genetic component and an environmental component, Ei:

Yi ¼ Ai þ Ei: ð2Þ

Due to shared ancestry, the genotypes of individuals in the sample will be correlated and

thus, the genetic components of the individuals in the sample will be correlated. Moreover, the

environments experienced by individuals may be correlated, and these environmental effects

may be correlated with the genetic components. If we are interested in understanding the fac-

tors that shape the trait of interest, we must control for the covariance induced by shared
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genetics and shared environment. This covariance can be written as follows:

CovðYi;YjÞ ¼ CovðAi;AjÞ þ CovðAi; EjÞ þ CovðEi;AjÞ þ CovðEi; EjÞ: ð3Þ

For the rest of the paper, our focus will be on the first term, Cov(Ai, Aj), the covariance in

phenotypes between individuals due to genetic covariance. We focus on this term because,

as we show subsequently, many models used by both statistical geneticists and phylogenetic

biologists can be understood without reference to the components that include environ-

mental effects. There are some circumstances in which genetic covariance in Eq 6 is unde-

fined, such as when effect sizes have an undefined variance [61], or under certain

phenomenological models of evolution on phylogenies [62,63]; we reserve these situations

for future work and focus on situations in which the genetic covariance is finite in the sub-

sequent sections.

2.2. Conceptualizations of the genetic covariance among individuals

Individuals who are more closely related will have more similar genotypes. For example, indi-

viduals in the same local population may share the same alleles identical by descent due to

recent common ancestry. On the other hand, individuals in different species may not share

alleles due to the species being fixed for alternative alleles at a given locus. Using Eq 1,

CovðAi;AjÞ ¼ Covð
X

l

blGil;
X

l

blGjlÞ

¼
X

l
CovðblGil; blGjlÞ þ

X

l6¼k
CovðblGil; bkGjkÞ: ð4Þ

The first term arises from the correlations between individuals at single loci, whereas the

second term arises from correlations among loci between individuals. We focus on the first

term, and all derivations below assume the second term is equal to zero, despite the fact that it

will generally not be identically zero in realistic situations. As with gene-environment correla-

tion in the previous section, many conceptualizations of genetic covariance used in practice

can be viewed as neglecting the second term. Under a neutral model, the second term is 0 in

expectation over distinct realizations of the evolutionary process, and its variance does not

grow with the number of loci under commonly studied forms of population structure [64,65].

Intuitively, this term disappears in expectation under neutral evolution because the effect sizes

and genotypes are uncorrelated, and hence the sum is of a mix of positive and negative terms,

which cancel out on average, although it will likely be non-zero in any particular data set.

Nonetheless, the second term in Eq 4 will often be nonzero in practice, and systematic correla-

tions among loci that make the term nonzero in expectation can arise in biologically realistic

situations, for example, if directional selection acts on polygenic traits. If a population experi-

ences directional selection on a highly polygenic phenotype, much of the phenotypic change,

compared with a related population that has not experienced such selection, is due to to small,

coordinated changes in allele frequency, leading to systematic covariances among loci, even if

they are unlinked [65,66]. Although we do not discuss these complications here, linkage can

affect the evolution of polygenic traits [67] and the results of heritability estimates [68].

We would like to understand how different assumptions about the evolutionary process

affect the genetic covariance among individuals. To do so, it is necessary to make further

assumptions about the effect sizes and genotypes. In principle, different modeling scenarios

might require us to cast as random the genotypes (e.g., because they are the outcome of mating

and mendelian processes that are viewed as random), the effect sizes (e.g., because they arise
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due to random mutations on a haplotype or are unknown), or both. (Either genotypes or effect

sizes might reasonably be—and sometimes are—treated as fixed and not random in some sce-

narios, as we discuss below. Our formulation of random effect sizes is distinct from that of

Kempthorne [69], who defined allelic effects that can depend on allele frequency and other fac-

tors that affect the trait [70].) Moreover, the relationship between effect size and genotype can

depend on details of the underlying evolutionary model. Hence, in general,

CovðblGil; blGjlÞ 6¼ b
2

l CovðGil;GjlÞ.

Nonetheless, by making assumptions about the evolutionary process, we can obtain useful

approximations of the genetic covariance. As an example, developed further below, consider a

model in which mutation and selection act on a quantitative trait. The effect size of a locus, βl,

might be modeled as being drawn from a distribution, and its allele frequency pl then could

evolve according to a model that depends on βl. Then, genotypes Gil and Gjl are drawn accord-

ing to allele frequency and possibly other features. In this scenario generally, the relationship

between βl and Gil may be complicated. However, if selection is sufficiently weak as not to dis-

rupt Hardy–Weinberg proportions or linkage equilibrium, then genotype frequencies depend

only on the allele frequency, pl. In that case, we might represent the situation with a simplified

causal graph βl!pl!Gil, in which βl and Gil are conditionally independent given the allele fre-

quency pl [71–73].

We generalize this notion by considering that in certain cases, like the one discussed above,

there may be a latent variable that renders the genotypes Gil and effect sizes βl conditionally

independent. We use Z to represent such a variable in general. Conditioning on Z and using

the definition of covariance and the law of total expectation, the first term becomes

CovðblGil; blGjlÞ ¼ Eðb
2

l GilGjlÞ � EðblGilÞEðblGjlÞ

¼ EZðEðb
2

l jZÞEðGilGjljZÞÞ � EZðEðbljZÞEðGiljZÞÞEZðEðbljZÞEðGjljZÞÞ ð5Þ

This formula applies as long as the genetic covariance exists and the evolutionary model

admits a variable Z that accounts for the relationship between effect sizes and genotypes (and

all the relevant expectations exist). Moreover, it applies when the variable Z = β or Z = G.

Below, we will explore how applications across statistical and evolutionary genetics special-

ize Eq 5 in different ways to create a matrix summarizing genetic covariance relevant to pheno-

typic variation, which we refer to as S. In a sample of n individuals (or n species), S is n × n,

and Sij is proportional to some version of Eq 5. We will see that assumptions made in different

fields relate to the underlying evolutionary process shaping genetic and phenotypic variation.

Among other names, in different settings, S might take the form of a “genetic relatedness

matrix,” “kinship matrix,” “expected genetic relatedness matrix,” or “phylogenetic variance-

covariance matrix.” Below, we consider the off-diagonal entries of each of these matrices in

turn.

2.2.1. The genetic relatedness matrix. In this subsection, we show how the general poly-

genic model described above can yields the GRM, a realization of S that is commonly used to

estimate heritability from SNP data [74] or to accommodate covariance due to relatedness in

GWAS [24–26,28]. In statistical-genetic practice, genotypes are typically mean centered,

meaning that genotypes are represented as ~Gil ¼ Gil �
1

n

P
j Gjl, and also standardized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plð1 � plÞ

p
. With this notation, the ijth entry of the canonical GRM is given by

X

l

~Gilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plð1 � plÞ

p
~Gjl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plð1 � plÞ

p ¼
X

l

~Gil
~Gjl

2plð1 � plÞ
: ð6Þ
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Historically, it seems that the motivation for this form of the GRM was not to characterize

covariance in the genetic components of traits. Instead, early uses of the GRM tend to justify

the normalization in terms of giving each locus “equal weight,” since under Hardy–Weinberg

equilibrium, the variance of ~Gil is 2pl(1−pl), or in terms of the fact that the variance in allele fre-

quency change due to one generation of drift is proportional to 2pl(1−pl) [23,75]. However, we

show that Eq 6 can also be justified as being proportional to the covariance of the genetic com-

ponent of the phenotypes of individuals i and j under certain assumptions.

We begin by setting Z = pl in Eq 5. This move is justified because, under a simplified model

of polygenic selection and assuming genotypes are in Hardy–Weinberg proportions, the effect

sizes and genotypes are conditionally independent given the allele frequencies [71], and it

yields

Covðbl
~Gil; bl

~GjlÞ ¼ EpðEðb
2

l jplÞEð~Gil
~GjljplÞÞ:

(The second term in Eq 5 vanishes because mean-centering of genotypes guarantees that

Eð~GilÞ ¼ Eð~GjlÞ ¼ 0:)

With observed genotypes, the expectation over genotypes at a given frequency can be

approximated as follows:

E ~Gil
~Gjljpl ¼ p

� �
�

1

np

X

l:pl¼p

~Gil
~Gjl;

where np is the number of sites with frequency p. To obtain the GRM as in Eq 6, we assume

that Eðb2

l jpl ¼ pÞ � b2
ðpÞ has the form

b
2 pð Þ ¼

s2

2pð1 � pÞ
; ð7Þ

where σ2 is simply a constant that we will show is related to the additive genetic variance.

Then,

Cov Ai;Aj

� �
�
X

p
np

s2

2pð1 � pÞ
1

np

X

l:pl¼p
~Gil

~Gjl ð8Þ

¼ s2
X

l

~Gil
~Gjl

2pð1 � pÞ
: ð9Þ

where the final line is equivalent to Eq 6. In Section A in S1 Text, we include a demonstration

that Eq 7 arises under a model of mutation-selection balance under Gaussian stabilizing selec-

tion on the focal trait, such that

b
2 pð Þ ¼

2mVs

pð1 � pÞ
;

where μ is the mutation rate at that locus and Vs is the variance of the Gaussian fitness func-

tion. This derivation suggests that Eq 7 may be suitable for variants of large effect impacting

traits under strong selection, but may not be appropriate when effect sizes are smaller, traits

evolve under weaker selection, when there is a substantial contribution of genetic drift [71,76]

or when the model is violated in other ways, including when there are multiple traits under sta-

bilizing selection, and the causal variants are pleiotropic for these traits [71], or when alleles’
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frequencies are due not to their causal effects on the trait but instead to their LD with causal

variants.

This formulation of the GRM also allows estimation of the additive genetic variance, VA,

via estimation of σ2. For a panmictic population with an effect size-allele frequency relation-

ship specified by (7), it can be shown that

VA ¼ s
2L;

where L is the number of loci. However, using this approach to estimate the additive genetic

variance and heritability may result in errors if the true relationship between allele frequency

and effect size is weaker than supposed here. One approach to generalizing the standard GRM

is to instead suppose b
2
ðpÞ / ð2pð1 � pÞÞ� a, known as the “α model” or “LDAK model”

[22,68]. The α parameter is often interpreted as related to the strength of selection acting on a

trait [76,77]. In plant and animal breeding, sometimes the same normalization is used as in

human genetics, and sometimes genotypes are mean centered but not standardized [78–80].

2.2.2. The (pedigree-based) kinship matrix. Historically, plant and animal breeders,

along with human and behavior geneticists interested in resemblance of relatives, have fre-

quently faced a situation in which they had: (1) (at least partial) pedigree data describing the

parentage of sets of individual plants or animals; (2) phenotypic data on those individuals; but

(3) no genome-wide genetic information. In such a situation, one can model the entries of S

as a function of expected genetic similarity based on the pedigree information, as opposed to

realized genetic sharing observed from genotypes [79,81–83]. One can specialize Eq 4 by fixing

the effect sizes, leading to

Covð
X

blGil;
X

blGjlÞ ¼ 2yijVA; ð10Þ

where θij is the kinship coefficient (obtained from the pedigree) relating individuals i and j,
and VA is the additive genetic variance. Although many derivations exist in standard texts

(e.g., [83,84]), we include one in Section B in S1 Text for completeness.

Methods based on this formulation include the “animal model” [81,83,85,86], a widely used

approach for prediction of breeding values in quantitative genetics. The connection between

the animal model and genome-wide marker-based approaches was plain to the quantitative

geneticists who first developed marker-based approaches to prediction [78], and it is also

noted in papers aimed at human geneticists [22,74,87], whose initial interest in the framework

focused on heritability estimation. Similarly, the animal model is known to be intimately con-

nected to the phylogenetic methods we discuss later [40–42]. One implication is that close con-

nections between methods used in statistical genetics and phylogenetics, which are our focus

here, must exist.

2.2.3. The expected genetic relatedness matrix (eGRM). If neither genotypes nor pedi-

grees are available, additional assumptions are necessary to compute the genetic contribution

to phenotypic covariance between individuals. In particular, we let Z = β, the effect size itself,

in Eq 5. Unlike in the previous subsection, the effect sizes are not fixed; they are random and

independent of genotype. Effect sizes and genotypes are independent when the focal trait is

selectively neutral (and loci are not pleiotropic for or in LD with causal variants for other traits

under selection). In this case, one can use a coalescent approach to integrate over alternative

realizations of the gene tree(s) and of the mutational process (as in the branch-based approach

in [88]). We show in Section C in S1 Text that, when averaged over the mutational histories
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and gene trees at L independent segregating variants,

Cov Ai;Aj

� �
¼ LE b

2
� �EðTijÞ

EðTÞ
: ð11Þ

In principle, the entries of the relatedness matrix could be computed on the basis of a

demographic model; in this approach, one would average over both random gene trees and

random mutations. This is the approach used by McVean [89] to provide a genealogical inter-

pretation of principal components analysis in genetics.

In a related approach, several recent methods in statistical genetics [58,59,90] and in phylo-

genetics [91] take as input a genome-wide inference of local gene trees. If the gene trees are

treated as known, then the only source of randomness is the placement of mutations, as in

equation S7, and averaging over trees is accomplished by taking an average over the estimated

gene trees. For example, Link and colleagues [58] compute the expectation of a local GRM

(i.e., a local eGRM) conditional on estimated gene trees in a region of the genome. These local

eGRMs are then used as input to a variance-components model, which brings some advan-

tages in mapping QTLs. Specifically, the resulting (conditional) expected genetic relatedness

matrices naturally incorporate LD, providing better estimates of local genetic relatedness than

could be formed from a handful of SNPs in a local region [58,90].

2.2.4. The phylogenetic variance-covariance matrix. In an extreme case, we might con-

sider only variation among long-separated species. If we ignore incomplete lineage sorting,

there may be only a single tree that describes the relationships among species, and the expecta-

tion over gene trees used in the previous subsection can be dropped, leaving us with equation

S7. Then the entries of the relatedness matrix S, which in the case of phylogenetic methods is

referred to as the phylogenetic variance-covariance (or vcv), are given by

Cov Ai;Aj

� �
¼

LEðb2
Þ

T
Tij: ð12Þ

This can be recognized as the covariance under the Brownian motion model [45] com-

monly used to model continuous traits in phylogenetics, given a phylogenetic tree, when set-

ting the diffusion rate σ2 of the Brownian motion process to

s2 ¼
LEðb2

Þ

T
: ð13Þ

Eq 13 may look unlike expressions for σ2 in phylogenetics, where the Brownian motion rate

is typically taken to be VA/N, where VA is the additive genetic variance and N is the effective

population size, following Lande [92], or simply UEðb2
Þ, where U represents the total muta-

tion rate toward causative alleles, following Lynch and Hill [93]. To reconcile our result with

the existing literature, note that if mutations occur on the tree as a Poisson process with a rate

U per unit of tree length, then EðLÞ ¼ UT, so that

E s2ð Þ ¼
EðLÞEðb2

Þ

T

¼ UEðb2
Þ;

as shown by Lynch and Hill [93]. Further, under a neutral model, the equilibrium additive
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genetic variance VA is proportional to NUEðb2
Þ [94]. Thus, under neutrality,

VA

N
/

NUEðb2
Þ

N

¼ UEðb2
Þ;

showing that under a neutral model, the Lande formulation is equivalent to the Lynch and Hill

formulation, up to constants that depend on ploidy. Thus, we see that our Eq 13 matches

familiar formulations in the literature [95].

Consistent with previous arguments (e.g., [35]), this result also implies that one interpreta-

tion of the standard PGLS model is that it stratifies the regression between focal variables by

an unobserved variable (or variables) that evolved primarily by drift. Hansen and colleagues

have pointed out that this may not be an appropriate model for testing for adaptation

[32,33,96], which was the primary motivation for developing many comparative methods in

the first place [97]. Moreover, recently, standard PGLS has come into question in scenarios in

which there is discordance between the gene tree and the species tree [98–100]. Our formula-

tion makes it clear that the standard PGLS formulation only applies when there is a single tree

underlying all loci; if there is instead a distribution of gene trees, equation S8 suggests that the

appropriate thing to do is to average over gene trees, as suggested by Hibbins and colleagues

[99], and as done in a statistical genetics setting [58,59]. However, one difficulty is deciding

over which gene trees one should average, particularly if the trait is oligogenic [100].

2.2.5. Connections among different approaches to modeling genetic contributions to

phenotypic covariance. Fig 1 provides a conceptual picture of how the various approaches

are related to each other. The left side shows the situation typical in genome-wide association

settings: SNP genotypes, shown as a matrix of variable sites with derived alleles colored in red,

are determined by the topologies of gene trees and the mutations that fall on them. The GRM

is computed on the basis of the SNP genotypes, as in Eq 12. If gene trees are known, then the

eGRM can be computed by averaging over Poisson placement of mutations as in equation S7

over gene trees. If only a demography is known, both gene trees and mutations can be

Fig 1. Relationship between different models of phenotypic covariance. The left-hand side shows the situation when

multiple samples are taken from each group, as is the case in a genome-wide association study. The population tree is

indicated by bold lines, and inside of it gene trees are indicated by thinner lines. Mutations on the gene trees are

indicated by purple lightning bolts. The mutations on the gene tree result in genotype matrices, shown as one 2 × 5

array per species, with purple-filled entries indicating mutations. The right-hand side shows the situation in

phylogenetics, where the species mean phenotype, indicated by a thin squiggly line, evolves according to a Brownian

motion within a species tree, indicated by bold lines. The distribution of possible phenotypes within each species is

marginally Gaussian.

https://doi.org/10.1371/journal.pbio.3002847.g001
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averaged over using coalescent theory, as in equation S8. The right-hand side shows the situa-

tion in phylogenetics: on a single fixed tree, the population trait mean evolves according to a

Brownian motion. This results in a multivariate Gaussian distribution of phenotypes across

species. We show that the covariance predicted by the Brownian motion model is equivalent

to the covariance predicted by averaging over Poisson distributed mutations on a gene tree

that is fixed to coincide with the species tree. In the figure, we highlight bifurcating population

trees for simplicity and clarity, but the results also apply in complex demographic scenarios

with admixture and reticulation.

2.3. How the same type of unmodeled structure misleads both GWAS and

phylogenetic regressions

That standard models in statistical genetics and phylogenetics are deeply related immediately

suggests that these models might suffer the same pathologies under model misspecification,

and that solutions to these pathologies could be shared across domains. Here, we illustrate this

by studying the problem of how unmodeled (phylo)genetic structure biases estimates of

regression covariates. This problem has received much attention in both the statistical genetics

[101,102] and phylogenetics literature [34,35,103], but the approaches taken in the 2 fields

differ.

We assume that we have a sample of size n with a predictor, x = (x1, x2,. . .,xn)T, and a trait,

y = (y1, y2,. . .,yn)T. In the context of GWAS, x may be the (centered) genotypes at a locus to be

tested for association, while in the context of phylogenetics, x is often an environmental vari-

able or another trait that is hypothesized to influence y. Then, the regression model is

yi ¼ xibþ Ai þ Ei; ð14Þ

where Ai and Ei are the genetic and environmental components, as in Eq 2, and β is the effect

of x on y. In genome-wide association studies, β is the effect size of the locus being examined,

while in phylogenetics it may quantify the effect of an environmental variable or other contin-

uous trait, rather than the effect of an allele. A is not generally known and so cannot be incor-

porated in the regression directly, raising the possibility that apparent effects of x may in fact

be due to A, if A and x are correlated. Even though A is unknown, if we know how individual

values of A covary, then we can correct for that covariance rather than correcting for A itself.

2.3.1. Theoretical analysis. To understand the purpose and limitations of corrections for

(phylo)genetic structure, we examined the properties of the estimators of regression coeffi-

cients with and without correction for (phylo)genetic structure. To do so, we diagonalize the

genetic covariance matrix, S = VΛVT where V ¼ ½ v1 v2 � � � vn � is a matrix whose col-

umns are the eigenvectors of S, and Λ = diag(λ1, λ2,. . .,λn) is a diagonal matrix whose diagonal

contains the eigenvalues of S. S, by virtue of being a covariance matrix, is guaranteed to be

positive semidefinite. Thus, by the spectral theorem, the eigenvectors of S can be used to form

an orthonormal basis of Rn. In practice, S may have repeated eigenvalues, and hence the

eigenvectors may need to be orthogonalized; intuitively, these repeated eigenvalues correspond

to individuals, populations, or species that share the same evolutionary history. We proceed by

assuming that the eigenvectors of S have been orthogonalized.

The simplest estimator of the relationship between 2 variables is the ordinary least squares

estimator,

b̂ðOLSÞ ¼

Pn
j¼1
ðvT

j xÞðv
T
j yÞ

Pn
j¼1
ðvT

j xÞðvT
j xÞ

: ð15Þ
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This shows that we can conceptualize the ordinary least squares estimator as adding up the

correlations between x and y projected onto each eigenvector of S. Loosely, large-magnitude

slope estimates arise when x and y both project with large magnitude onto one or more eigen-

vectors of S. If an eigenvector of S is correlated with a confounding variable, such as the

underlying (phylo)genetic structure, then x and y may both have substantial projections onto

it, even if x and y are only spuriously associated due to the confound.

Two seemingly distinct approaches have been proposed to address this issue. First,

researchers have proposed including the eigenvectors of S as covariates. In the phylogenetic

setting, this is known as phylogenetic eigenvector regression [104]. (In practice, researchers

often use the eigenvectors of a distance matrix derived from the phylogenetic tree rather than

S itself, but these 2 matrices have a straightforward mathematical connection [105].) In the

statistical genetics setting, the analogous approach is to include the principal component pro-

jections of the data that are used to generate the genetic relatedness matrix—i.e., the principal

components of the genotype matrix [23]—in the regression. For completeness, in Section D in

S1 Text we show that these 2 approaches include the same covariates, up to a scaling factor.

In Section E in S1 Text, we show that, when the first J eigenvectors of S are included as

covariates, the estimate of the coefficient of the predictor x is

b̂ðOLS;EIGÞ
x ¼

Pn
j¼Jþ1
ðvT

j xÞðv
T
j yÞ

Pn
j¼Jþ1
ðvT

j xÞðvT
j xÞ

: ð16Þ

This is straightforwardly the OLS estimator (Eq 15), except that the first J eigenvectors of S

are removed. This shows why inclusion of the eigenvectors of S as covariates can correct for

(phylo)genetic structure: it simply eliminates some of the dimensions on which x and y may

covary spuriously. However, it also shows the limitations of including eigenvectors as covari-

ates. First, because it is simply cutting out entire dimensions, it can result in a loss of power.

Second, confounding that aligns with eigenvectors that are not included in the design matrix is

not corrected.

The second approach to including the eigenvectors of S as covariates is to use S itself to

model the residual correlation structure. In phylogenetic biology, this is accomplished using

phylogenetic generalized least squares (PGLS) [39,40], whereas in statistical genetics this is

accomplished using LMMs [28,106]. (We work with generalized least squares below; for a sim-

ilar argument in an LMM setting, see [27].) In both settings, it is common to add a “white

noise” or “environmental noise” term, such that the residual covariance structure is

s2
GSþ s

2
EI, where s2

G scales the contribution of genetics, s2
E scales the contribution of environ-

ment, and I is the identity matrix. In the context of phylogenetics, the relative sizes of s2
G and

s2
E are of interest when estimating the phylogenetic signal measurement Pagel’s lambda

[107,108], whereas in statistical genetics, they are the subject of heritability estimation [109].

Then, both PGLS and LMM approaches model the data as follows:

y � Multivariate Normalðbx; s2

GSþ s
2

EIÞ;

where s2
G and s2

E are typically estimated, for example, by maximum likelihood [110], residual

maximum likelihood [74], Haseman–Elston regression [111,112], or other methods

[28,106,113]; see Min and colleagues [114] for a comparison some estimation approaches and

an examination of the impact of linkage disequilibrium. For the theoretical analysis that fol-

lows, we assume s2
G ¼ 1 and s2

E ¼ 0. This does not restrict the applicability of our analysis,

because s2
GSþ s

2
EI has the same eigenvectors as S, with corresponding eigenvalues s2

Gli þ s
2
E,

where λi are the eigenvalues of S.
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In Section F in S1 Text, we show that the GLS estimate of the regression coefficient is

b̂ðGLSÞ
x ¼

Pn
j¼1
l
� 1

j ðv
T
j xÞðv

T
j yÞ

Pn
j¼1
l
� 1

j ðvT
j xÞðvT

j xÞ
: ð17Þ

Like the ordinary least squares estimator in Eq 18, this expression includes all the eigenvec-

tors of S. However, it downweights each eigenvector according to its eigenvalue. Thus, GLS

downweights dimensions according to their importance in S, which aims to describe the

structure according to which x and y may be spuriously correlated. However, unlike Eq 16, it

retains all dimensions. Compared with adjusting for the leading eigenvectors of S using OLS,

the GLS approach retains some ability to detect contributions to associations that align with

the leading eigenvectors. It also adjusts for S in its entirety, rather than just its leading eigen-

vectors. This means that it adjusts for even very recent (phylo)genetic structure, which will

likely not be encoded by the leading eigenvectors. That said, one disadvantage of GLS is that it

assumes that all eigenvectors of S contribute to confounding in proportion to their eigenval-

ues, potentially resulting in an inability to completely control for confounding if the effect of

an eigenvector of S is not proportional to its eigenvalue, as may be the case with, for example,

environmental confounding. In other words, the cost of including some adjustment for every

eigenvector of S is an assumption as to how these eigenvectors relate to confounding.

Where sample sizes and computational resources allow it, typical recent practice in statisti-

cal genetics is to use a linear mixed model framework while also including some eigenvectors

of S as covariates [28,106,113]. This at first may seem surprising, because it seems to be con-

trolling for S twice. However, the analysis above suggests that including the eigenvectors as

covariates and using GLS have different, and perhaps complementary, effects on the resulting

estimates. To see how they interact, we show in Section F in S1 Text that the estimate of the

regression coefficient of x,

b̂ðGLS;EIGÞ
x ¼

Pn
j¼Jþ1

l
� 1

j ðv
T
j xÞðv

T
j yÞ

Pn
j¼Jþ1

l
� 1

j ðvT
j xÞðvT

j xÞ
: ð18Þ

Thus, using the eigenvectors of S as covariates in a generalized least squares framework

may provide the benefits of both approaches: if there is confounding in a eigenvector of S that

is “too large”—that is, it is out of proportion with its associated eigenvalue—then if that eigen-

vector is included in the design matrix, it will simply be excised from the estimator, as in

Eq 17. However, we still maintain the ability to control for spurious association between x and

y due to the structure of S but not along included eigenvectors, as in Eq 17. The major diffi-

culty is in identifying the eigenvectors of S that might be associated with confounding effects

larger than their corresponding eigenvalues would suggest.

2.3.2. Simulation analysis. To put the intution developed from the previous subsection

into practice, we performed simulations in both phylogenetic and statistical-genetic settings.

First, to explore how the approaches outlined above correct for both (phylo)genetic structure

and environmental confounding, we performed simulations inspired by Felsenstein’s “worst

case” scenario [35,46]. Felsenstein’s worst case supposes that there are 2 diverged groups of

samples that are measured for 2 variables x and y, which are then tested for association; the

only (phylo)genetic structure is between the 2 groups. In the phylogenetic setting, we represent

the 2 clades as star trees with 100 tips each, connected by internal branches, and we simulate x
and y as arising from independent instances of Brownian motion along the tree (see Methods).

In the statistical genetics setting, we use msprime [115] to simulate 100 diploid samples from

each of 2 populations, and then simulated quantitative traits using the alpha model [22] (see
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Methods). In this setting, McVean [89] showed that the first eigenvector of S captures popula-

tion membership; hence, we only include the first eigenvector to capture any residual con-

founding. To perform inference in the phylogenetic case, we used the package phylolm
[110], and for the statistical-genetic case, we used a custom implementation of REML [74].

We first explored the impact of deepening the divergence between the 2 clades, starting

from no divergence and increasing to high divergence (Fig 2A and 2C). As expected, we see

ordinary least squares fails to control for the population stratification as the divergence time

becomes large, resulting in excessive false positives. However, all of the other approaches

appropriately controlled for the population stratification. This is as expected: in the case of 2

populations, all of the (phylo)genetic stratification is due to the accumulation of genetic vari-

ants in each group. Hence, either discarding the correlation between x and y on the dimension

corresponding to group membership as in Eq 16 or downweighting it as in Eq 18 is sufficient

to remove the confounding effect of the population stratification.

Fig 2. Performance of different methods for controlling confounding in Felsenstein’s worst case. (A) A depiction

of Felsenstein’s worst case in the phylogenetic setting. A Brownian motion evolves within a species tree separating 2

clades. For simplicity, 2 tips are shown in each clade; in the simulations, each clade contains 100 tips. The purple arrow

shows a simulated singular evolutionary event (see text). (B) The false positive rate of each method in a simulated

phylogenetic regression as a function of divergence time between the 2 groups. The horizontal axis shows the

divergence time, while the vertical axis shows the fraction of tests that would be significant at the 0.05 level. Each line

represents a different method. The lines for OLS + Eig1 and PGLS + Eig1 are completely overlapping. (C) The false

positive rate of each method in a simulated phylogenetic regression as a function of the size of non-Brownian shifts in

both predictor and response variables. The horizontal axis shows the standard deviation of the normal distribution

from which the shift was drawn, and the vertical axis shows the fraction of tests that would be significant at the 0.05

level. The lines for OLS + Eig1 and PGLS + Eig1 are completely overlapping. (D) A depiction of Felsenstein’s worst

case in the statistical genetic setting. Gene trees with mutations are embedded within a population tree depicting 2

divergent populations. For simplicity, 2 samples are shown within each population; in the simulations, each population

consists of 100 diploid individuals. The purple arrow shows a simulated environmental effect (see text). (E) The false

positive rate of each method in a simulated GWAS as a function of divergence time between the 2 groups. The

horizontal axis shows the divergence time, while the vertical axis shows the fraction of tests that would be significant at

the 0.05 level. Each line represents a different method. (F) The false positive rate of each method in a simulated GWAS

as a function of the size of an environmental shift. The horizontal axis shows the standard deviation of the normal

distribution from which the shift was drawn, and the vertical axis shows the fraction of tests that would be significant

at the 0.05 level. Underlying data can be found at https://zenodo.org/records/13774370.

https://doi.org/10.1371/journal.pbio.3002847.g002

PLOS BIOLOGY Mapping phenotypes within and between populations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002847 October 9, 2024 13 / 30

https://zenodo.org/records/13774370
https://doi.org/10.1371/journal.pbio.3002847.g002
https://doi.org/10.1371/journal.pbio.3002847


Despite the success of both OLS with eigenvector covariates and generalized least squares in

controlling for population stratification, it has recently been recognized that phylogenetic gen-

eralized least squares does not control for all types of confounding in Felsenstein’s worst case:

for example, if there is a large shift in x and y on the branch leading to one of the groups, phy-

logenetic generalized least squares produces high false positive rates [35]. Because including

the first eigenvector of S will completely eliminate the contribution to the estimated coefficient

that projects on group membership, whereas generalized least squares will only downweight it,

we reasoned that including the first eigenvector in either ordinary or generalized least squares

should restore control even in the presence of large shifts.

We tested our hypothesis using simulations with divergence time in which ordinary least

squares was not sufficient to correct for population stratification. In the phylogenetic case, we

simulated an additional shift in one of the clades for both x and y by sampling from indepen-

dent normal distributions, while in the statistical-genetic case, we simulated an environmental

shift sampled from a normal distribution in one of the clades (Fig 2B and 2D). As expected,

ordinary least squares is insufficient to address the confounding, and becomes increasingly

prone to false positives as the size of the shift increases. In line with our hypothesis, phyloge-

netic generalized least squares and linear mixed modeling also fail to control for the shift as it

becomes large, while including just a single eigenvector in each case is sufficient to regain con-

trol over false positives.

The preceding analysis might suggest that including eigenvectors of S as covariates is suffi-

cient to adjust for (phylo)genetic structure while also being superior to generalized least

squares in dealing with environmental confounding. Recent work, however, suggests that

inclusion of principal components may not be able to adjust for more subtle signatures of pop-

ulation structure [8,15,102,116]. To explore this, we simulated both phylogenetic regression

and a variant association test using a more complicated model of population structure. For the

phylogenetic case, we simulated pure birth trees with 200 tips, while in the statistical genetics

case, we simulated pure birth trees with 20 tips and sampled 10 diploids from each tip using

msprime. Then, as before, we simulated using a Brownian motion model in the phylogenetic

case, or an additive model for the statistical genetic case.

As expected, using ordinary least squares without any eigenvector covariates does not con-

trol for population structure in either the phylogenetic or the statistical-genetic setting, but the

methods that use generalized least squares estimates of the regression coefficients appropri-

ately model population structure (Fig 3). Although adding additional eigenvectors reduces the

false positive rate of ordinary least squares, false positives are not reduced to the nominal level

of 5%. This is in line with our theoretical analysis: as seen in Eq 16, including eigenvectors in

ordinary least squares eliminates dimensions that explain the most genetic differentiation, but

the correlations on the remaining dimensions are not adjusted. Because there is substantial

fine-scale population structure in these simulations, removal of just a few dimensions with

large eigenvalues is not sufficient to control for the subtle signature of population structure. In

the phylogenetic setting, we expect that including additional eigenvectors would eventually

gain control of false positives, but it may require including all of the eigenvectors and result in

an overdetermined problem. On the other hand, in the population-genetic simulations,

including additional eigenvectors will not increase control over false discoveries. There are 2

reasons for this. First, because S is estimated from the genetic data, the eigenvectors them-

selves are estimated. In practice, this means that eigenvectors corresponding to small eigenval-

ues are estimated poorly. Second, because we have 200 samples but only 20 populations, many

of the samples share the same evolutionary history, and hence several eigenvectors share the

same eigenvalue “in theory”—that is, if viewed from the perspective of the population tree

rather than the realized gene trees or genotypes. Roughly speaking, in this simulation, there
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are only approximately 20 eigenvectors that correspond to “true” confounding. In practice,

due to randomness of mutations and gene trees, the remaining eigenvectors will not share

identical eigenvalues, but will nonetheless correspond to genetic differentiation of individuals

with shared evolutionary history, and hence will not correct for genetic confounding. This is

reminiscent of the observations that in some human genetics data sets, only the first few eigen-

vectors stably capture genetic differentiation [5], and that LMM approaches become increas-

ingly necessary when the sample includes relatively close genealogical relatives, whose

relatedness is captured in the GRM but will not typically affect its leading eigenvectors [102].

In contrast to including eigenvectors as fixed effects as part of an OLS analysis, generalized

least squares approaches, as shown in Eq 18, will continue to correct for population structure

that is found deeper into the eigenvectors of the correlation matrix (echoing points previously

raised in the phylogenetics literature [117–119]). We also note that while the our analysis is

focused on the eigenvectors of S, we suspect similar lines of reasoning may apply to other situ-

ations in which eigenvector regression is used, such as in spatial ecology [120].

2.4. A case study of including eigenvectors as covariates in PGLS

Although the eigenvectors of the phylogenetic variance-covariance matrix (or closely related

quantities) have often been included in regression models by researchers using phylogenetic

eigenvector regression [104], to the best of our knowledge, phylogenetic biologists have not

previously used these eigenvectors as fixed effects in a PGLS model, which we have shown

above to be a potentially effective strategy in theory. To illustrate the approach in practice, we

re-examine a recent study by Cope and colleagues [121] that tested for coevolution in mRNA

expression counts across 18 fungal species. More specifically, these researchers were interested

in testing whether genes whose protein products physically interacted (using independent data

from [122]) were more likely to have correlated expression counts than those whose protein

products did not. They found support for this prediction. While we suspect the core finding is

Fig 3. The performance of eigenvectors of the covariance matrix in a model with more complex population

structure. (A) Performance of ordinary least squares and phylogenetic least squares in a model with 200 tips related by

a pure birth tree. The horizontal axis shows the number of eigenvectors included as covariates, and the vertical axis

shows the fraction of tests that would be significant at the 0.05 level. (B) Performance of ordinary least squares and a

linear mixed model in a model with 20 populations related by a pure birth tree and 10 diploid individuals per

population. The horizontal axis shows the number of eigenvectors included as covariates, and the vertical axis shows

the fraction of tests that would be significant at the 0.05 level. Underlying data can be found at https://zenodo.org/

records/13774370.

https://doi.org/10.1371/journal.pbio.3002847.g003
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robust, and there are some theoretical reasons to expect that RNA expression counts should be

Brownian-like under some selective scenarios [123], other studies have shown expression

counts for many genes in this data set (and many others) are not well described by a Brownian

process [124,125]. As such, some of their observed correlations could be spurious due to

unmodeled phylogenetic structure [35].

We re-analyzed the data of Cope and colleagues [121] with the addition of the eigenvec-

tors of (phylogenetic) S as fixed effects in the PGLS model (see Methods and materials for

details). Cope and colleagues used a correlated multivariate Brownian model to test their

hypothesis, which is slightly different from the more common PGLS approach [126], but

they are close enough for our purposes. We conducted several iterations of the analyses,

varying the number of eigenvectors included from 1 to 10; Fig 4A shows how the different

species project onto each principal component. We found that, as anticipated, the number

of significant correlations decreased as more eigenvectors were included (Fig 4B). However,

as more eigenvectors were included, the proportion of significant correlations in gene-

expression count data in which the genes are known to physically interact increased (up to

about 8 eigenvectors; Fig 4C). If we assume that the significant correlations for physically

interacting genes are more likely to be true positives than those for pairs of genes not

known to interact physically, then the results would suggest that including the eigenvectors

in the analysis might reduce the false positive rate while still finding many of the true

positives.

Uyeda and colleagues [35] suggest that one way to mitigate the spurious correlations arising

from large, unreplicated events would be to include indicator variables in the regression model

that encode the part of the phylogeny from which a tip descends. This is similar in spirit to the

use of hidden Markov models for the evolution of discrete traits [103,127]. However, as Uyeda

and colleagues point out, this leaves open the hard problem of identifying the branches on

which to stratify. It is not possible to include an indicator for every branch, as the model would

then be overdetermined. Using the simple method borrowed from GWAS studies of including

eigenvectors of S as fixed effects in the typical phylogenetic regression may be a promising

(partial) solution to the problem of spurious correlations.

Fig 4. Impact of including phylogenetic eigenvectors on detection of coevolution of gene-expression levels in

fungi. (A) The fungal tree; colors indicate each species’ position in the first 10 dimensions of principal component

space. (B) The overall number of significant pairs decreases as more eigenvectors are included in the regression. The

horizontal axis indicates the number of eigenvectors included as fixed effects, and the vertical axis shows the

proportion of significant pairs compared with a model that includes no eigenvectors as fixed effects. (C) The

enrichment of known binding pairs as a function of eigenvectors included. The horizontal axis indicates the number of

eigenvectors included as fixed effects, and the vertical axis shows the enrichment of known binding pairs relative to a

model in which no eigenvectors are included. Underlying data can be found at https://zenodo.org/records/13774370.

https://doi.org/10.1371/journal.pbio.3002847.g004
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3. Discussion

3.1. The genetic model versus the statistical model

We began by adding assumptions to a general model of a polygenic trait (Eq 2) in order to

show that common practices in disparate areas of genetics can be seen as special cases of the

same model. One notable assumption is that of a purely additive model [128] for the pheno-

type (Eq 1). There are 2 reasons we might be suspicious of this assumption. First, it is debatable

to what extent most traits obey the additive model, given evidence of non-additive genetic con-

tributions to traits across species [129,130]. However, even if non-additive contributions are

important for determining individual phenotypes or for understanding traits’ biology, they

might still contribute a relatively small fraction of trait variance, meaning they might be safely

ignored for some purposes [131–133] (but see [134]). Second, we used a neutral coalescent

model to find an expression for the Brownian motion diffusion parameter in terms of the effect

sizes of individual loci (Eq 13). Although this provides a satisfying justification for the use of a

phylogenetic regression model with a Brownian covariance structure and for averaging over

gene trees to accommodate ILS (sensu [99]), it is likely unreasonable in many situations. It has

long been appreciated that, while a population-mean phenotype will be expected to evolve

according to a Brownian process under simple quantitative-genetic models of genetic drift

[43,92,95,135] the Brownian rate estimated from phylogenetic comparative data is orders of

magnitude too slow to be consistent with plausible values for the quantitative-genetic parame-

ters used to derive the Brownian model [95,135–137]. There are more elaborate explanations

than pure genetic drift for why long-term evolution may show relatively simple dynamics

[138] but understanding the coalescent patterns of loci under these scenarios is likely challeng-

ing [139] and beyond the scope of the present paper.

However, even if one finds the genetic model unreasonable, the equivalence of the statistical
models used in statistical genetics and phylogenetics still holds: that is, the core structures of

the models are the same, whether one is willing to interpret the parameters in the same way or

not. Indeed, phylogenetic biologists have been here before, with the realization that PGLMMs

are structurally equivalent to the pedigree-based analyses using the animal model from quanti-

tative genetics [40–42] even though the recognition that they were equivalent did not rely on a

specific genetic model for phenotypes. (We showed here that they can both be derived from

the same genetic model.) Nonetheless, the recognition of a structural equivalence between the

animal model and the phylogenetic model made it possible to use techniques from quantitative

genetics to solve problems in phylogenetic comparative methods. For example, inspired by a

similar model from [140], Felsenstein developed a phylogenetic threshold model [141,142], in

which discrete phenotypes are determined by a continuous liability that itself evolves accord-

ing to a Brownian process. Hadfield [143] proved this model was identical to a variant of the

animal model and that existing MCMC algorithms could be used to efficiently estimate param-

eters and extend the threshold to the multivariate case, which had not been previously derived.

3.2. Towards a more integrative study of the genetic bases of phenotypes

Building a general framework is a step towards inference methods that coherently integrate

intra- and interspecific variation to understand the genotype-to-phenotype map and how evo-

lutionary processes, acting at different time scales, shape it. Indeed, the importance of evolu-

tionary conservation in triaging functional variants in the human genome has long been

appreciated and is becoming increasingly important as we collect larger samples of people; the

same is true for the use of genomics in agriculture [57] and conservation genetics [55]. Recent

work showed that evolutionary conservation accounts for the vast majority of the predictive
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power of a state-of-the-art deep learning approach to variant annotation [144,145]. But most

of the cutting-edge phylogenomic approaches for triaging variants typically do not use the

phylogeny at all (i.e., only multiple sequence alignments [MSAs] are used), or include the phy-

logeny without an explicit evolutionary model [146]. This is a limitation because we are not

making the most of the information in the tree, nor are we able to draw specific inferences

about how evolutionary processes have shaped complex traits from the MSA alone. Overcom-

ing this limitation is not straightforward and will require mechanistic modeling: The observed

level of conservation is a nonlinear function of the strength of selection acting against variants

at a locus; small changes in the strength of negative selection can greatly decrease the amount

of variability seen on phylogenetic timescales, and this can cause counterintuitive behavior of

conservation scores [54,147].

A key difficulty in combining information across timescales arises from different assump-

tions about the evolutionary process. For example, the canonical GRM in statistical genetics

assumes that the variance of an allele’s effect size is inversely proportional to the heterozygosity

at the locus. As we show in Section A in S1 Text, this assumption can be justified under a

model of mutation-selection balance with Gaussian stabilizing selection on a single trait. How-

ever, we do not generally understand how robust such approaches are under more complex

(and realistic) evolutionary scenarios that include the influence of genetic drift and selection

on genetically correlated traits, nor how errors influence downstream inferences

[71,76,148,149]. There is substantial evidence that rarer variants tend to have larger effect sizes

[76,150–155], which is broadly consistent with the motivation for the canonical GRM and for

the more general α model, which supposes that the variance of the effect size of an allele is

given as a power law function of its heterozygosity [22,68,74,76]. (Although we show here that

setting α = 1 can be motivated by a model of stabilizing selection on a single trait and ignoring

genetic drift, the more general α model is not derived from an evolutionary model.) However,

close examination of GWAS effect sizes suggests a poor fit of the α model for many traits

[148], and it has been suggested that more complex models might better capture the wide vari-

ation of effect sizes [155]. Further, recent explosive human population growth has resulted in a

massive number of rare variants [156–160]—assuming that there is substantial input of selec-

tively neutral mutations, some of these rare variants will be rare not because they have been

driven to or held at low frequency by selection, but simply because they represent the effect of

population growth on the neutral site-frequency spectrum. As such, using the alpha model

may result in overestimation of heritability for traits where there is a substantial contribution

of genetic drift and may result in incompletely controlled confounding in trait mapping stud-

ies. And although effect sizes of individual causal variants can be estimated well for common

variants, this is unlikely ever to be possible for sufficiently rare variants; hence, a realistic

model of effect sizes as a function of allele frequency is necessary for inclusion in efforts such

as rare-variant association studies [52,161–163].

In contrast, in our derivation of gene-tree (i.e., those using the eGRM) and phylogenetic

(i.e., using the phylogenetic variance-covariance matrix) model, we assumed that effect sizes

and genotypes were independent, and that trait-affecting mutations fall on gene trees as a Pois-

son process [89]. These assumptions are justified if the causal variants are neutral. But the neu-

trality assumption contradicts a wealth of evidence from both within and among species that

quantitative trait variation is under some form of selection [164–171] and that the effect sizes

of causal variants tend to be larger in more evolutionarily conserved regions [50,144,172–175],

which also implies an important role of purifying selection. The α model, or presumably other

models of the relationship between effect size and allele frequency, can be incorporated in an

eGRM [59,90]. After all, an eGRM is an expectation (under Poisson-process mutation) of a

GRM, and so any scaling applied to genotypes in computing the GRM can be made to apply to

PLOS BIOLOGY Mapping phenotypes within and between populations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002847 October 9, 2024 18 / 30

https://doi.org/10.1371/journal.pbio.3002847


the eGRM. But the interpretation becomes complicated, since the assumption that mutations

accrue on the tree as a Poisson process is still being relied upon.

One way phylogenetic biologists include selection is by modeling the evolution of quantita-

tive traits with an Ornstein–Uhlenbeck (OU) process [96,176–179], which can be derived

from a quantitative-genetic model of stabilizing selection [92], although in practice, the OU

model is often interpreted as a phenomenological model of the evolution of the adaptive peaks

[44,180]. Many researchers have used the S matrix derived from an OU process in PGLS mod-

els [176,181]; this is straightforward because the data remain multivariate Gaussian [39,110].

One could potentially use an analogous approach to model phenotypic evolution along gene

trees within a species (to inform the construction of eGRM, for example). Such an approach

could improve inferences from both tree-based GWAS (sensu [58,59]) and from emerging

phylogenetic comparative approaches that consider gene trees rather than just the species trees

[98,99,182] (such approaches are important as only using a single species tree may lead one to

mistake similarity due to common ancestry for convergence [100,183–185]). However, identi-

fying the correct form of the model would likely require an analysis of the ancestral selection

graph [139,186], a notoriously challenging theoretical endeavor.

In sum, an implication of our results is that standard approaches in both statistical genetics

and phylogenetic comparative methods incorporate assumptions that are plausibly motivated

under neutrality but questionable under various forms of selection—ignoring covariances

among loci (the second term in Eq 4), placing mutations on the tree as a Poisson process,

invoking Brownian motion, etc. Common practices in both fields—e.g., normalizing geno-

types by their heterozygosity or using OU processes—can be motivated by simple models that

include selection, but they do not constitute a principled approach to incorporating drift and

selection into models of trait covariance. In particular, the considerations that lead to them are

not sufficiently general (e.g., normalizing by heterozygosity does not incorporate drift or plei-

otropy), and they are sometimes used in combination with maneuvers that arise from incom-

patible assumptions. Developing more robust evolutionary-genetic models of genetic

contributions to trait covariance is a formidable challenge, but it may lead to stronger statisti-

cal practices that can be used in both micro- and macroevolutionary studies.

We suspect that there are additional connections between statistical genetics and phyloge-

netics that we have not mapped out here and that could be profitably explored. For example,

in most of the applications in which phylogenomic data are used to inform mapping studies,

researchers have large-scale phenotypic and genomic sampling for a focal population or spe-

cies and then sparser genomic sampling (often a single genome) and an estimate of phenotypic

means (if even that) for the others. However, there are emerging data sets from closely related

species that have dense phenotypic and genomic samples from multiple lineages [187,188]. We

anticipate that our framework could be used to derive more principled and powerful

approaches for analyzing these types of data. At the other extreme are methods in which we

have sparse sampling of both phenotypes and genomes for a phylogenetically diverse set of

species (which generally fall under the PhyloG2P label, mentioned above [60]). In this case,

researchers either use phylogenetic data to uncover convergent mutations associated with phe-

notypic convergence across lineages (e.g., [189]) or more commonly, identify regions with a

relatively large number of substitutions—but not necessarily the same ones—in phylogeneti-

cally distinct lineages that have convergently evolved the same phenotype [190,191]. For exam-

ple, Sackton and colleagues [192] used such an approach to identify regulatory regions that

had high rates of evolution in lineages of flightless birds; they also demonstrated that some of

these regions influence wing development using experimental perturbations. Such rate associ-

ation tests (see also [193]) seem to be very similar, both conceptually and statistically, to tech-

niques used in rare-variant association studies, which look for local enrichment of rare
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variants in cases versus controls, rather than associating single variants with phenotype

[52,161–163]. We suspect that one could derive a formal equivalence between these sets of

methods as we did between GWAS and PGLS above using similar techniques.

There are clear biological rationales explaining why various types of analyses will be more

or less informative at different timescales. But this is a difference of degree and not of kind.

And the different methodological traditions in statistical genetics and phylogenetics are just

that—traditions. There is no reason that researchers should think about the problem of trait

mapping in fundamentally distinct ways just because they happened to be trained in a statisti-

cal genetics or phylogenetics lab. Ultimately, we should work to take the best ideas from both

of these domains and blend them into a more cohesive paradigm that will clarify the molecular

bases of phenotypes.

4. Materials and methods

4.1. Simulation details

To perform phylogenetic simulations, we used the fastBM function from the phytools R
package [194]. In all cases, Brownian motions were simulated independently and with rate 1.

When performing phylogenetic simulations of Felsenstein’s worst case, we used stree from

ape [195] to simulate 2 star trees of 100 tips, where each tip in the star tree had length 0.5. We

then connected the 2 star trees using internal branches of varying length. To add a non-

Brownian confounder, in each simulation we added an independent normal random variable

with varying standard deviations to the x and y values for individuals from clade 1. (Within a

given simulation, all individuals in clade 1 were augmented by the same value for each trait,

while between simulations, the confounding effect was a random draw.) When performing

simulations in a more complicated phylogeny, we used TreeSim [196] to generate pure-birth

trees with birth rate = 1 and complete taxon sampling. Each simulation replicate used a differ-

ent tree. For ordinary least squares on phylogenetic data, we used the R function lm. For PGLS

on phylogenetic data, we used the R package phylolm [110] with the Brownian motion

model and no environmental noise.

To perform GWAS simulations, we first generated neutral tree sequences and mutations

using msprime [115]. To ensure our results were not simply due to genetic linkage, we simu-

lated a high recombination of 10−5 per generation with a mutation rate an order of magnitude

lower, 10−6 per generation. We first simulated causal variants on a sequence of length 100,000

and generated phenotypes by sampling an effect size for each variant from a normal distribu-

tion with mean 0 and variance 0:01

2plð1� plÞ
, where pl is the allele frequency of variant l. We then cre-

ated each individual’s phenotype using the additive model, Eq 4. We then added

environmental noise so that the trait’s heritability was less than 1. In all simulations, every pop-

ulation had diploid population size 10,000. To simulate the variant being tested for association,

we simulated independent tree sequences and mutations and selected a random variant with

allele frequency greater than 0.1. When simulating a GWAS analogue of Felsenstein’s worst

case, we drew 100 diploid samples from each population and varied the divergence time of the

2 populations. To include an environmental shift in 1 population, we added a normal random

variable with varying standard deviation only to individuals in population 1. To simulate

under a more complicated population structure, we simulated 20-tip pure birth trees using

TreeSim with a birth rate of 5. We then multiplied all branch lengths by 10,000 to convert

them into generations and imported them into msprime using the from_species_tree
function. We then generated tree sequences and mutations, sampling 10 diploid individuals

from each population. Note that each replicate simulation was performed on an independent

random population tree. We performed association testing using a custom python
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implementation of the LMM. We first used restricted maximum likelihood to estimate s2
G and

s2
E, followed by using generalized least squares to estimate the regression coefficients and their

standard errors.

4.2. Phylogenetic analysis of yeast gene expression data

We obtained the species tree, gene expression matrix, and list of physically interacting genes

from https://github.com/acope3/GeneExpression_coevolution [121]. We then randomly sub-

sampled 500 genes that had measurements in at least 15 of the 20 species to test for association,

resulting in 124,750 pairs. Because of differential missingness among genes, we computed phy-

logenetic eigenvector loadings only on the subtree for which both genes had data present,

meaning that each pair may have had slightly different eigenvector loadings. We then used

phylolm [110] with no measurement error to estimate the regression coefficient. For each

number of eigenvectors included, we corrected for multiple testing by controlling the FDR at

0.05 using the Benjamini–Hochberg procedure [197].

Supporting information

S1 Text. Complete derivations of results.

(PDF)
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spectrum quantified from variation in 141,456 humans. Nature. 2020; 581(7809):434–443. https://doi.

org/10.1038/s41586-020-2308-7 PMID: 32461654

158. Keinan A, Clark AG. Recent explosive human population growth has resulted in an excess of rare

genetic variants. Science. 2012; 336(6082):740–743. https://doi.org/10.1126/science.1217283 PMID:

22582263

159. Gao F, Keinan A. Explosive genetic evidence for explosive human population growth. Curr Opin

Genet Dev. 2016; 41:130–139. https://doi.org/10.1016/j.gde.2016.09.002 PMID: 27710906

160. Gazave E, Ma L, Chang D, Coventry A, Gao F, Muzny D, et al. Neutral genomic regions refine models

of recent rapid human population growth. Proc Natl Acad Sci U S A. 2014; 111(2):757–762. https://doi.

org/10.1073/pnas.1310398110 PMID: 24379384

161. Asimit J, Zeggini E. Rare variant association analysis methods for complex traits. Annu Rev Genet.

2010; 44:293–308. https://doi.org/10.1146/annurev-genet-102209-163421 PMID: 21047260

162. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data

with the sequence kernel association test. Am J Hum Genet. 2011; 89(1):82–93. https://doi.org/10.

1016/j.ajhg.2011.05.029 PMID: 21737059

PLOS BIOLOGY Mapping phenotypes within and between populations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002847 October 9, 2024 28 / 30

https://doi.org/10.1086/663681
http://www.ncbi.nlm.nih.gov/pubmed/22218305
https://doi.org/10.1073/pnas.2311219120
https://doi.org/10.1073/pnas.2311219120
http://www.ncbi.nlm.nih.gov/pubmed/37883436
https://doi.org/10.1101/gr.097857.109
http://www.ncbi.nlm.nih.gov/pubmed/19858363
https://doi.org/10.1371/journal.pgen.1004697
https://doi.org/10.1371/journal.pgen.1004697
http://www.ncbi.nlm.nih.gov/pubmed/25375159
https://doi.org/10.3389/fgene.2021.763363
http://www.ncbi.nlm.nih.gov/pubmed/34868244
https://doi.org/10.1016/j.gde.2015.07.008
https://doi.org/10.1016/j.gde.2015.07.008
http://www.ncbi.nlm.nih.gov/pubmed/26311074
https://doi.org/10.1038/ng.610
http://www.ncbi.nlm.nih.gov/pubmed/20562874
https://doi.org/10.1038/s41467-019-12276-5
http://www.ncbi.nlm.nih.gov/pubmed/31562340
https://doi.org/10.1073/pnas.1114759108
http://www.ncbi.nlm.nih.gov/pubmed/22003128
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1038/s41588-018-0101-4
http://www.ncbi.nlm.nih.gov/pubmed/29662166
https://www.biorxiv.org/content/early/2022/04/19/2022.04.18.488696
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
http://www.ncbi.nlm.nih.gov/pubmed/27535533
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
https://doi.org/10.1126/science.1217283
http://www.ncbi.nlm.nih.gov/pubmed/22582263
https://doi.org/10.1016/j.gde.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/27710906
https://doi.org/10.1073/pnas.1310398110
https://doi.org/10.1073/pnas.1310398110
http://www.ncbi.nlm.nih.gov/pubmed/24379384
https://doi.org/10.1146/annurev-genet-102209-163421
http://www.ncbi.nlm.nih.gov/pubmed/21047260
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21737059
https://doi.org/10.1371/journal.pbio.3002847


163. Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities.

Genome Med. 2015; 7(1):1–11.

164. Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983:1210–

1226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x PMID: 28556011

165. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill C, et al. The strength of pheno-

typic selection in natural populations. Am Nat. 2001; 157(3):245–261. https://doi.org/10.1086/319193

PMID: 18707288

166. Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabi-

lizing selection in contemporary humans. Proc Natl Acad Sci U S A. 2018; 115(1):151–156. https://doi.

org/10.1073/pnas.1707227114 PMID: 29255044

167. Stroud JT, Moore MP, Langerhans RB, Losos JB. Fluctuating selection maintains distinct species phe-

notypes in an ecological community in the wild. Proc Natl Acad Sci U S A. 2023; 120(42):

e2222071120. https://doi.org/10.1073/pnas.2222071120 PMID: 37812702

168. Araki H, Berejikian BA, Ford MJ, Blouin MS. Fitness of hatchery-reared salmonids in the wild. Evol

Appl. 2008; 1(2):342–355. https://doi.org/10.1111/j.1752-4571.2008.00026.x PMID: 25567636

169. Colautti RI, Barrett SC. Rapid adaptation to climate facilitates range expansion of an invasive plant.

Science. 2013; 342(6156):364–366. https://doi.org/10.1126/science.1242121 PMID: 24136968

170. Siepielski AM, DiBattista JD, Carlson SM. It’s about time: the temporal dynamics of phenotypic selec-

tion in the wild. Ecol Lett. 2009; 12(11):1261–1276. https://doi.org/10.1111/j.1461-0248.2009.01381.x

PMID: 19740111

171. De Villemereuil P, Charmantier A, Arlt D, Bize P, Brekke P, Brouwer L, et al. Fluctuating optimum and

temporally variable selection on breeding date in birds and mammals. Proc Natl Acad Sci U S A. 2020;

117(50):31969–31978. https://doi.org/10.1073/pnas.2009003117 PMID: 33257553

172. Dudley JT, Chen R, Sanderford M, Butte AJ, Kumar S. Evolutionary meta-analysis of association stud-

ies reveals ancient constraints affecting disease marker discovery. Mol Biol Evol. 2012; 29(9):2087–

2094. https://doi.org/10.1093/molbev/mss079 PMID: 22389448

173. Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI. Shifting paradigm of association studies:

value of rare single-nucleotide polymorphisms. Am J Hum Genet. 2008; 82(1):100–112. https://doi.

org/10.1016/j.ajhg.2007.09.006 PMID: 18179889

174. Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated

genetic variation in humans and primates. Science. 2023; 380(6648):eabn8153.

175. Gorlova OY, Xiao X, Tsavachidis S, Amos CI, Gorlov IP. SNP characteristics and validation success

in genome wide association studies. Hum Genet. 2022; 141(2):229–238. https://doi.org/10.1007/

s00439-021-02407-8 PMID: 34981173

176. Hansen TF. Stabilizing selection and the comparative analysis of adaptation. Evolution. 1997; 51

(5):1341–1351. https://doi.org/10.1111/j.1558-5646.1997.tb01457.x PMID: 28568616

177. Butler MA, King AA. Phylogenetic comparative analysis: a modeling approach for adaptive evolution.

Am Nat. 2004; 164(6):683–695. https://doi.org/10.1086/426002 PMID: 29641928

178. Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC. Modeling stabilizing selection: expanding the

Ornstein–Uhlenbeck model of adaptive evolution. Evolution. 2012; 66(8):2369–2383. https://doi.org/

10.1111/j.1558-5646.2012.01619.x PMID: 22834738

179. Uyeda JC, Harmon LJ. A novel Bayesian method for inferring and interpreting the dynamics of adap-

tive landscapes from phylogenetic comparative data. Syst Biol. 2014; 63(6):902–918. https://doi.org/

10.1093/sysbio/syu057 PMID: 25077513

180. Hansen TF. Adaptive landscapes and macroevolutionary dynamics. In: Svensson E, Calsbeek R, edi-

tors. The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, UK; 2012. p.

205–226.

181. Butler MA, Schoener TW, Losos JB. The relationship between sexual size dimorphism and habitat use

in Greater Antillean Anolis lizards. Evolution. 2000; 54(1):259–272. PMID: 10937202

182. Yan H, Hu Z, Thomas GW, Edwards SV, Sackton TB, Liu JS. PhyloAcc-GT: A Bayesian method for

inferring patterns of substitution rate shifts on targeted lineages accounting for gene tree discordance.

Mol Biol Evol. 2023; 40(9):msad195. https://doi.org/10.1093/molbev/msad195 PMID: 37665177

183. Hahn MW, Nakhleh L. Irrational exuberance for resolved species trees. Evolution. 2016; 70(1):7–17.

https://doi.org/10.1111/evo.12832 PMID: 26639662

184. Guerrero RF, Hahn MW. Quantifying the risk of hemiplasy in phylogenetic inference. Proc Natl Acad

Sci U S A. 2018; 115(50):12787–12792. https://doi.org/10.1073/pnas.1811268115 PMID: 30482861

PLOS BIOLOGY Mapping phenotypes within and between populations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002847 October 9, 2024 29 / 30

https://doi.org/10.1111/j.1558-5646.1983.tb00236.x
http://www.ncbi.nlm.nih.gov/pubmed/28556011
https://doi.org/10.1086/319193
http://www.ncbi.nlm.nih.gov/pubmed/18707288
https://doi.org/10.1073/pnas.1707227114
https://doi.org/10.1073/pnas.1707227114
http://www.ncbi.nlm.nih.gov/pubmed/29255044
https://doi.org/10.1073/pnas.2222071120
http://www.ncbi.nlm.nih.gov/pubmed/37812702
https://doi.org/10.1111/j.1752-4571.2008.00026.x
http://www.ncbi.nlm.nih.gov/pubmed/25567636
https://doi.org/10.1126/science.1242121
http://www.ncbi.nlm.nih.gov/pubmed/24136968
https://doi.org/10.1111/j.1461-0248.2009.01381.x
http://www.ncbi.nlm.nih.gov/pubmed/19740111
https://doi.org/10.1073/pnas.2009003117
http://www.ncbi.nlm.nih.gov/pubmed/33257553
https://doi.org/10.1093/molbev/mss079
http://www.ncbi.nlm.nih.gov/pubmed/22389448
https://doi.org/10.1016/j.ajhg.2007.09.006
https://doi.org/10.1016/j.ajhg.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/18179889
https://doi.org/10.1007/s00439-021-02407-8
https://doi.org/10.1007/s00439-021-02407-8
http://www.ncbi.nlm.nih.gov/pubmed/34981173
https://doi.org/10.1111/j.1558-5646.1997.tb01457.x
http://www.ncbi.nlm.nih.gov/pubmed/28568616
https://doi.org/10.1086/426002
http://www.ncbi.nlm.nih.gov/pubmed/29641928
https://doi.org/10.1111/j.1558-5646.2012.01619.x
https://doi.org/10.1111/j.1558-5646.2012.01619.x
http://www.ncbi.nlm.nih.gov/pubmed/22834738
https://doi.org/10.1093/sysbio/syu057
https://doi.org/10.1093/sysbio/syu057
http://www.ncbi.nlm.nih.gov/pubmed/25077513
http://www.ncbi.nlm.nih.gov/pubmed/10937202
https://doi.org/10.1093/molbev/msad195
http://www.ncbi.nlm.nih.gov/pubmed/37665177
https://doi.org/10.1111/evo.12832
http://www.ncbi.nlm.nih.gov/pubmed/26639662
https://doi.org/10.1073/pnas.1811268115
http://www.ncbi.nlm.nih.gov/pubmed/30482861
https://doi.org/10.1371/journal.pbio.3002847


185. Hibbins MS, Gibson MJ, Hahn MW. Determining the probability of hemiplasy in the presence of incom-

plete lineage sorting and introgression. Elife. 2020; 9:e63753. https://doi.org/10.7554/eLife.63753

PMID: 33345772

186. Neuhauser C, Krone SM. The genealogy of samples in models with selection. Genetics. 1997; 145

(2):519–534. https://doi.org/10.1093/genetics/145.2.519 PMID: 9071604

187. Plassais J, Parker HG, Carmagnini A, Dubos N, Papa I, Bevant K, et al. Natural and human-driven

selection of a single non-coding body size variant in ancient and modern canids. Curr Biol. 2022; 32

(4):889–897. https://doi.org/10.1016/j.cub.2021.12.036 PMID: 35090588
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