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SUMMARY
Sex differences in complex traits are suspected to be in part due to widespread gene-by-sex interactions
(GxSex), but empirical evidence has been elusive. Here, we infer the mixture of ways in which polygenic ef-
fects on physiological traits covary betweenmales and females. We find that GxSex is pervasive but acts pri-
marily through systematic sex differences in the magnitude of many genetic effects (‘‘amplification’’) rather
than in the identity of causal variants. Amplification patterns account for sex differences in trait variance. In
some cases, testosterone may mediate amplification. Finally, we develop a population-genetic test linking
GxSex to contemporary natural selection and find evidence of sexually antagonistic selection on variants
affecting testosterone levels. Our results suggest that amplification of polygenic effects is a common
mode of GxSex that may contribute to sex differences and fuel their evolution.
INTRODUCTION

Genetic effects can depend on context. If the distribution of con-

texts differs between groups of people, as it does for males and

females, so should the average genetic effects on traits.1,2 In

particular, such gene-by-sex interaction (GxSex) may be a result

of sex differences in bodily, environmental, and social contexts

or epistatic interaction with sex chromosomes.3–9 Sex differ-

ences in genetic effects on complex traits are clearly of high

evolutionary8,10–14 and translational9,15–22 importance. However,

with the exception of testosterone levels,23–26 the basis of sexual

dimorphism in complex traits is not well understood.19 To date,

empirical evidence of GxSex in genome-wide association study

(GWAS) data—whether focused on identifying large GxSex

effects at individual loci or by estimating genetic correlations

between the sexes for polygenic traits—has been lacking.

Here, we set out to study governing principles of GxSex in

complex human traits and explain why current approaches for

characterizing GxSex may be lacking for this goal. We then sug-

gest a mode of GxSex that may have gone largely underappre-

ciated: a shared difference in the magnitude of effect of many

variants between the sexes, which we refer to as ‘‘amplifica-

tion.’’27 Amplification can happen for a large set of variants

regulating a specific pathway if the pathway responds to a

sex-contingent cue.28–31 In classic hypothesis-testing ap-

proaches that test for a GxSex effect separately in each variant,

the signal of amplificationmay be crushed under themultiple-hy-

potheses burden. On the other hand, even state-of-the-art tools

designed with complex traits in mind may miss amplification

signals. They often treat genetic correlation (between GWAS
This is an open access article und
estimates based on samples from two contexts, such as males

and females) as a litmus test for whether effects are the same

in the two contexts,32–36 but correlations are scaleless and

thus may entirely miss amplification signals.

We developed a new approach for flexibly estimating male-fe-

male genetic covariance relationships and applied it to 27

complex physiological traits in the UK Biobank. We found that

amplification is pervasive across traits. The inferred polygenic

covariance structure explains sex differences in trait variance

remarkably well and, in most cases, helps improve phenotypic

prediction. Finally, we consider an implication of polygenic

GxSex for sexually antagonistic selection. We develop a model

that demonstrates how variants that affect traits may be subject

to sexually antagonistic selection whenmale and female trait op-

tima are very different or, surprisingly, even when the trait optima

are very similar. We developed a novel test for sexually antago-

nistic polygenic selection that connects GxSex to signals of

contemporary viability selection. Using this test, we find subtle

evidence of sexually antagonistic selection on variants affecting

testosterone levels.
RESULTS

The limited scope of single-locus analysis
We conducted GWASs stratified by sex chromosome karyotype

for 27 continuous physiological traits in the UK Biobank (UKB)

using a sample of �150,000 individuals with two X chromo-

somes, another sample of �150,000 individuals with XY, and a

combined sample that included the XX and XY samples. We

chose to analyze traits with SNP heritabilities over 7.5% in the
Cell Genomics 3, 100297, May 10, 2023 ª 2023 The Author(s). 1
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combined sample to have higher statistical power. While there is

not a strict one-to-one relationship between sex chromosome

karyotype and biological sex, we label XX individuals as females

and XY individuals as males and view these labels as capturing

group differences in distributions of contexts for autosomal ef-

fects rather than as a dichotomy.9,22,37 Throughout, we analyze

GWASs on the raw measurement units as provided by the

UKB. (See the note on the rationale behind this choice under

Flexible model of sex-specific genetic effects as arising from a

mixture of covariance relationships).

Among the 27 traits, we observed substantial discordance be-

tween males and females in associations with the trait only for

testosterone and waist:hip ratio (whether or not it is adjusted for

BMI; Figure S1). For testosterone, as noted in previous analyses,

associated genes are often in separate pathways in males and fe-

males.23,25 This is reflected in the small overlap of genes neigh-

boring top associations in our GWAS. For example, in females,

the gene CYP3A7 is involved in hydroxylation of testosterone, re-

sulting in its inactivation. Inmales, FKBP4plays a role in the down-

streamsignaling of testosterone in the hypothalamus. Both genes,

toour knowledge,donot affect testosterone levels in theother sex.

Forwaist:hip ratio,wesawmultiple associations in females only,

such as variants near ADAMTS9, a gene involved in insulin sensi-

tivity.38 As a previous work established,23,25,26 testosterone and

waist:hip ratio are the exception, not the rule; most traits did not

display many sex differences in top associations. For instance,

arm fat-free mass, a highly heritable dimorphic trait, showed

near-perfect concordance in significant loci (FigureS1). Aprevious

study26 examining the concordance in top associations between

males and females found few uniquely associated SNPs (<20)

across the 84 continuous traits they studied; waist:hip ratio was

anexceptionwith100associationsunique toonesex.Considering

the evidence of the polygenicity of additive genetic variation

affectingmany complex traits,39–41 it stands to reason that looking

beyond lead associations, through a polygenic prism, may aid

characterization of non-additive effects (such as GxSex) as well.

The limited scope of analyzing GxSex via heritability
differences and genetic correlations
We turned to consider the polygenic nature of GxSex, first by

employing commonly used approaches: comparing sex-specific

SNP heritabilities and examining genetic correlations. We used

linkage disequilibrium score regression (LDSC)36,42 to estimate

these for each trait. In most traits (17 of 27), males and females

had a genetic correlation greater than 0.9. Testosterone had

the lowest genetic correlation of 0.01, which suggests very little

sharing of signals betweenmales and females (see similar results

by Flynn et al.25 and Sinnott-Armstrong et al.23).
Figure 1. Heritabilities and genetic correlations cannot fully distinguis

(A) Genetic correlations between males and females, estimated using bivariate L

(B) The x axis represents the relative heritability (i.e., the SNP heritability divided b

asterisks indicate body mass-related traits with greater heritability in both sex-s

represent ± 1 SE.

(C) Polygenic models of GxSex. We examine different models of the nature of Gx

leads to different expectations from the analysis of heritability and genetic correlat

and magnitudes of genetic effects corresponding to each model. h2m, h
2
f , and h2

respectively.
For the majority of traits (18 of 27), male and female heritabil-

ities were greater than the heritability in a sample that included

both sexes. For instance, in arm fat-free mass (right), the herita-

bility in the both-sex sample was 0.232 (±0.009), while the heri-

tabilities for male and female were 0.279 (±0.012) and 0.255

(±0.011), respectively. In particular, all body mass-related traits,

excluding BMI-adjusted waist:hip ratio, had greater sex-specific

heritabilities (Figures 1A and 1B).

In addition, we noticed a trend where, as the genetic correla-

tion decreased, the difference between the heritabilities within

each sex and in the sample combining both sexes tended to

become larger (Pearson r = �0.88, paired t test p = 10�10;

Figures 1A and 1B). Nonetheless, several traits with genetic cor-

relation above 0.9 also present relatively large sex differences in

heritability. For example, diastolic blood pressure and arm fat-

free mass (left) had differences of 5.2% (two-sample t test p =

3,10� 6) and 3.4% (two-sample t test p = 0.04), respectively.

These examples are incompatible with a model of pervasive

uncorrelated genetic effects driving sex-specific genetic contri-

butions to variation in the trait (Figure 1C, second model).

We therefore considered two other alternative hypotheses un-

der a simple additive model of variance in a trait. Differences in

heritability are due to sex differences in genetic variance, in envi-

ronmental variance, or both. If genetic effects are similar, then

differences in environmental variance alone could cause herita-

bility differences (Figure 1C, first model). But as we show in the

STAR Methods, under such a model, the heritability in the com-

bined sample cannot be smaller than both sex-specific

heritabilities.

Therefore, the observation of higher sex-specific heritabilities

for most traits suggests that the genetic variance must differ be-

tween males and females. Given the random segregation of

autosomal alleles, independent of an individual’s sex chromo-

some karyotype, and assuming, further, that there is little to no

interaction of sex and genotype affecting participation in the

UKB,43 allele frequencies in males and females are expected

to be very similar. Thus, this observation suggests that causal

genetic effects differ between males and females for most traits

analyzed.

A last hypothesis that might tie together many of the observa-

tions summarized in Figure 1 is a less appreciated mode of

GxSex, amplification, where the identity and direction of effects

are largely shared between sexes (leading to high genetic corre-

lation), but the magnitude of genetic effects differs—e.g., larger

genetic effects on blood pressure in females—which, in turn,

leads to differences in genetic variance (Figure 1C, third model).

We can test the hypothesis that amplification acts systemati-

cally—across a large fraction of causal variants—by examining
h models of GxSex

DSC, are shown in descending order.

y the SNP heritability) estimated in the sample with both sexes combined. Red

pecific samples compared with the sample combining both sexes. Error bars

Sex in complex traits that link to previous studies and motivations. Each model

ions (A and B). The illustrations in the third columndepict examples of directions

denote narrow-sense heritabilities in males, females, and a combined sample,
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Figure 2. Evaluating evidence of systematic amplification

(A–D) We regressed trait values in males (green) and separately in females (orange) on a PGS estimated in an independent sample of males. Points show mean

values in one decile of the PGS; the fitted line and associated effect estimate and R2 correspond to regressions on the raw, non-binned data. In some traits, like

albumin (A), the PGS has a similar effect on the trait in both sexes. In other traits (B and D), the estimated effect of the PGS differs significantly, consistent with a

substantial difference in the magnitude of genetic effects of sites included in the PGS.

(E–H) Same analysis as in (A)–(D) but with a PGS pre-estimated in an independent sample of females.

(I and J) Summary of the ratio of the effect of the PGS on the trait (±2 SE) in males to the effect in females across physiological traits. See results for other traits in

Figure S11.
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the effects of polygenic scores (PGSs), genetic predictors of a

complex trait. Under this hypothesis, regardless of whether the

PGS is estimated in a sample of males, females, or a combined

sample of bothmales and females, it should be predictive in both

sexes because the causal variants and the direction of their ef-

fects are shared, and the magnitude is correlated (Figure 1C,

third model). At the same time, in the sex for which genetic ef-
4 Cell Genomics 3, 100297, May 10, 2023
fects are larger, the effect of the PGS is expected to be larger.

To evaluate evidence of the systematic amplification model,

we estimated PGSs based on our sex-specific GWASs and

examined their effect in both sexes. For some traits, like albumin

and lymphocyte percentage, the effects of the same PGS on trait

value in males and females were statistically indistinguishable

(Figures 2A, 2E, 2I, and 2J). In a few other traits, such as diastolic
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blood pressure, the result was contingent on the sample in which

the PGSwas estimated (Figures 2C, 2G, 2I, and 2J). However, for

roughly half of the traits examined, regardless of the sample from

which the PGS was derived, the effect of the PGS was predictive

in both sexes but significantly larger in one of the sexes (17 of 27

traits with t test p <0.05 using the PGS derived from the males

sample; 13 of 27 using the PGS derived from the females sam-

ple; Figures 2B, 2D, 2F, 2H, 2I, and 2J). These observations

are consistent with systematic amplification.

The results presented in Figures 1 and 2 suggested to us that

various modes of polygenic GxSex ought to be jointly evaluated.

None of the hypothesized rules of thumb (Figure 1C) for interpret-

ing genetic correlations and sex differences in heritability worked

across all traits (see also a relevant discussion in Khramtsova

et al.9). This motivated us to directly estimate the covariance be-

tween genetic effects in males and females. Another reason to

treat covariance of genetic effects themselves as the estimand

of interest is that multiple, distinct GxSex patterns may exist

across subsets of genetic factors affecting a trait, depending

on the pathways through which the subset acts, and whether

and how the pathways are sex contingent (Figure 1C, fourth

model).

Flexible model of sex-specific genetic effects as arising
from a mixture of covariance relationships
We set to directly infer the mixture of covariance relationships of

genetic effects among the sexes. We analyzed all traits in their

raw measurement units as provided by the UKB. In particular,

we did not normalize or standardize phenotypes within each

sex before performing the sex-stratified GWAS because sex dif-

ferences in trait variance may be partly due to amplification.

Standardization would have therefore resulted in masking ampli-

fication signals that may exist in the data. In some cases, this is

indeed the purpose of standardization.44 More generally, while

each scaling choice has it merits, we view the measurement

of genetic effects in their raw units as the most biologically

interpretable.

We used multivariate adaptive shrinkage (mash),45 a tool that

allows inference of genome-wide frequencies of genetic covari-

ance relationships. We model the marginal SNP effect estimates

as sampled (with SNP-specific, sex-specific noise) from a

mixture of zero-centered normal distributions with various pre-

specified covariance relationships (2 3 2 variance-covariance

matrices for male and female effects; Equation 1 in Urbut

et al.45). Our pre-specified covariance matrices (‘‘hypothesis

matrices’’) span a wide array of amplification and correlation re-

lationships and use mash to estimate the mixture weights.

Loosely, these weights can be interpreted as the proportion of

variants that follow the pattern specified by the covariance ma-

trix (Figure 3A). Our covariance matrices ranged from �1 to 1

in between-sex correlation and 10 levels of relative magnitude

in females relative to males, including matrices corresponding

to no effect in one or both sexes (Figure S2).

We first focus on testosterone, for which previous research

sets the expectation for polygenic male-female covariance. In

terms of magnitude, the vast majority of effects should have

much greater effect in males. In terms of correlation, we expect

a class of genetic effects acting through largely independent and
uncorrelated pathways alongside a class of effects via shared

pathways.23 Independent pathways include the role of the hypo-

thalamic-pituitary-gonadal axis in male testosterone regulation

and the contrasting role of the adrenal gland in female testos-

terone production. Shared pathways involve sex hormone-bind-

ing globulin (SHBG), which decreases the amount of bioavailable

testosterone in males and females. As expected, we found that

mixtureweights for testosterone concentrated on greatermagni-

tudes in males and largely uncorrelated effects. Of the 32% total

weights on matrices with an effect in at least one sex, 98% of the

weights were placed on matrices representing larger effects in

males, including 20.4% (±0.7%) having male-specific effects

(Figures 3 and S5).

Amplification of genetic effects is the primary mode of
GxSex
The only trait of the 27 where a large fraction (R 10%) of non-

zero effects was negatively correlated was testosterone (17%).

Most effects were instead perfectly or near-perfectly correlated.

For example, diastolic blood pressure and eosinophil percent-

age had 66% (Figure 3B) and 68% (Data S8) of effects being

perfectly correlated, respectively. Overall, the low weights on

matrices representing negative correlation do not support

opposite directions of effects being a major mode of GxSex

(Figure S7).

In some traits, such as hemoglobin A1C or diastolic blood

pressure, previously considered non-sex specific because of

high genetic correlations between sexes and a concordance in

top GWAS hits, we find evidence of substantial GxSex through

amplification (Figures 3B and 3F).25,26 Furthermore, about half

(13 of 27) of the traits analyzed had themajority of weights placed

on greater effects in just one of the sexes (x axis in Figure 4A). For

instance, 92% of effects on BMI-adjusted waist:hip ratio were

greater in females, and 92% of effects on (right) arm fat-free

mass were greater in males. Both traits had mixture weights

concentrated on highly correlated effects (Figure 3). We

confirmed, using a simulation study, that this summary of sex-

biased amplification indeed captures sex differences in the

magnitude of genetic effects and that it is not due to differences

in the extent of estimation noise (e.g., variation in environmental

factors independent of genetic effects; Figures S5 and S6; STAR

Methods).

Across traits, the difference between the fraction of male-

larger effects and the fraction of female-larger effects correlates

strongly with male-to-female phenotypic variance ratio (Pearson

r = 0.873, p = 63 10�9 after removing testosterone as an outlier;

Figure 4A). This observation is consistent with our hypothesis of

amplification leading to differences in genetic variance between

sexes, thereby contributing substantially to sex differences in

phenotypic variance. Together, these observations point to

amplification, rather than uncorrelated effects, as a primary

mode of polygenic GxSex.

Another important question about the implication of pervasive

amplification is whether it is a major driver of mean phenotypic

differences. The ratio between male and female phenotypic

means is correlated with the difference between male-larger

and female-larger amplification (Pearson r = 0.75, p = 2310� 5 af-

ter removing testosterone and BMI-adjusted waist:hip ratio as
Cell Genomics 3, 100297, May 10, 2023 5
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Figure 3. Polygenic covariance structure between males and females

(A) Our analysis of the polygenic covariance between males and females is based on sex-stratified GWASs. We modeled the sex-stratified GWAS estimates as

sampled with error from true effects arising from amixture of possible covariance relationships between female and male genetic effects. As an example, shown

are illustrations for three possible relationships of the same qualitative nature—perfectly correlated effects that are also larger in females—and the mixture

weights estimated for each in the case of diastolic blood pressure.

(B–F) Each box shows the sum of weights placed on all covariance relationships of the same qualitative nature, as specified by relative magnitude (horizontal axis)

and correlation (vertical axis) betweenmale and female effects. The full set of pre-specified covariancematrices is shown in Figure S2, and the weights placed on

each of them for each trait are shown in Data S1–27. All weights shown are percentages of non-null weights; i.e., the weight divided by the sum of all weights

except for the one corresponding to no effect in either sex.
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outliers). Although this correlation is intriguing, within-sex GWAS

aims to explain individual differences from the mean of the sex,

and such GWAS results do not dictate the values of the sex

means. Further, the ratio of mean trait values between sexes
6 Cell Genomics 3, 100297, May 10, 2023
and the difference in amplification are strongly correlated with

phenotypic variance ratios (Figure 4A; Figure S8; see also Karp

et al.8), and many different causal accounts could explain these

correlations.
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Figure 4. Consequences of amplification

for trait variance and polygenic score pre-

dictive utility

(A) Phenotypic variance strongly correlates with

amplification. ‘‘Sex-biased amplification’’ on the x

axis is calculated by taking the difference between

the sum of mixture weights on covariance

matrices with male effects greater in magnitude

than female effects (M > F) and the sum of weights

of M < F matrices. The solid gray line shows a

linear fit across traits, excluding testosterone as an

outlier, with correlation summaries in gray in the

top left corner.

(B) Utility of the polygenic GxSex model for trait

prediction. The x axis shows the relative prediction

accuracy estimated from the incremental R2 ratio

of a GxSex model informed by polygenic covari-

ance patterns and an additive model. For each

trait, smaller points show relative prediction ac-

curacies across 20 cross-validation folds, and

larger points show the average across the 20 folds.

The phenotypes are ordered by the mean relative

prediction accuracy. The color of each point cor-

responds to the degree of sex-biased amplifica-

tion as described in (A).
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Finally, the pervasiveness of GxSex, alongside the mixture of

covariance relationships across the genome for many traits, may

be important to consider in phenotypic prediction. We compared

the prediction accuracy of PGSs that consider the polygenic

covariance structure with that of additive models that ignore

GxSex as well as models that include GxSex but do not consider

thepolygeniccovariancestructure (supplemental information;Fig-

ure S12). Indeed, for most traits (20 of 27 traits; Figure 4B), models
that consider the polygenic covariance

structure outperformall othermodels eval-

uated. Traits that showedbetter prediction

accuracy using the model that considered

polygenic covariance structure included

many body mass-related traits, such as

BMI and whole body fat mass, that also

tended to have higher sex-based amplifi-

cation (Figure 4B; Pearson

r = 0:56;p = 0:003 between sex-biased

amplification and prediction accuracy ra-

tio). These results point to the utility of

considering polygenic covariance struc-

ture in PGS prediction.

Testosterone as an amplifier
Thus far, we treated the genetic interac-

tion as discretely mediated by biological

sex. One mechanism that may underlie

GxSex is a cue or exposure that modu-

lates the magnitude (and less often the

direction) of genetic effects and varies in

its distribution between the sexes. As an

example of such a cue, we considered

testosterone. Testosterone may be a
plausible instigator because the hormone is present in distinctive

pathways and levels between the sexes and is a known contrib-

utor to the development of male secondary characteristics and

therefore could modulate genetic causes on sex-differentiated

traits.

To test this idea, we first binned individuals of each sex by their

testosterone levels. Then, for each trait and within the bin, we

quantified the magnitude of total genetic effect as the linear
Cell Genomics 3, 100297, May 10, 2023 7
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Figure 5. Amplification of total genetic effect

in relation to testosterone levels

(A) The relationship between testosterone level bins

and estimated magnitude of genetic effect on traits

is shown for three traits. The magnitude of genetic

effect is estimated using the slope of the regression

of phenotypic values to PGSs in that bin. The units

on the y axis are effect per standard deviation (SD)

of the PGSs across all individuals in all bins. The

hollow data points are bins with overlapping

testosterone ranges between males and females;

these are based on fewer individuals (�800

compared with �2,200 in other bins) and not

included in the regression. Figure S13 show all

other traits analyzed.

(B) The correlation for each sex (90%CI) are shown

for all 27 traits. Traits are ordered in descending

order of male-female differences in Pearson cor-

relation.
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regression coefficient of trait values to a PGS for the trait (STAR

Methods; see Figure S14 for results obtained using sex-specific

PGSs). For BMI, testosterone (mean per bin) and the magnitude

of genetic effect were correlated for males and females (Pearson

p < 0.05; Figure 5A). For all body mass-related traits, there was a

negative correlation between the magnitude of genetic effect

and testosterone levels for males and a positive correlation for

females (Figure 5B). Because the relationship with testosterone

remains contingent on sex, a model of testosterone as the sole

driver of the observed sex specificity would be invalid. These

observations may help explain previous reports of positive

correlations between obesity and free testosterone in women

and negative correlations in men.46 We conclude that, in body

mass-related traits, testosterone may be modulating genetic

effects in a sexually antagonistic manner.

We performed two additional analyses designed to control for

possible caveats to the association of testosterone and the

magnitude of polygenic effect. First, a test that controls for

possible confounding with age (Figure S16). Second, a test that

mitigates confounding with other variables or reverse causality

(where the magnitude of genetic effect affecting the focal trait

causally affecting testosterone levels; Figure S15). The evidence

of an effect of testosterone on the magnitude of polygenic effect

did not remain statistically significant in either of these tests. It is

possible, however, that this was due to the low statistical power

of these more conservative analyses (STAR Methods).

Are polygenic and environmental effects jointly
amplified?
Our results thus far suggest that polygenic amplification across

sexes is pervasive across traits and that the ratio of phenotypic
8 Cell Genomics 3, 100297, May 10, 2023
variance scales with amplification (Fig-

ure 4A). An immediate question of interest

is whether the same modulators that act

on the magnitude of genetic effects act

on environmental effects as well (see

also a relevant discussion by Domingue

et al.47). Consider the example of human
skeletal muscle. The impact of resistance exercise varies be-

tween males and females. Resistance exercise can be consid-

ered an environmental effect because it upregulates multiple

skeletal muscle genes present in males and females, such as in-

sulin growth factor 1 (IGF-1), which, in turn, is involved in muscle

growth.48 However, after resistance exercises at similar inten-

sities, upregulation of such genes is sustained in males, while

levels return sooner to the resting state in females (Figure S17).

It is plausible that modulators of the effect of IGF-1, such as in-

sulin49 or sex hormones,50,51 drive a difference in the magnitude

of effect of core genes such as IGF-1 in a sex-specific manner.

To express this intuition with a model: if amplification mecha-

nisms are shared, then amplification may be modeled as having

the same scalar multiplier effect on genetic and environmental

effects (Figure 6A). In the STAR Methods, we specify the details

of a null model of joint amplification, which yields the prediction

that the male-female ratio of genetic variances should equal the

respective ratio of environmental variances (blue line in Fig-

ure 6B). As we explain in the supplemental information, this

expectation is qualitatively different from those of two long-

standing ‘‘rule of thumb’’ predictions for sex differences in trait

variance52: the ‘‘greater male variability’’ and ‘‘estrus-mediated

variability’’ models, which provide a poor fit across the 27

physiological traits analyzed (Figure S18B).

We tested the fit of the theoretical prediction under pervasive

joint amplification across traits. We used our estimates of sex-

specific phenotypic variance and SNP heritabilities to estimate

the ratios of genetic and environmental variances. We note

that environmental variance is proxied here by all trait variance

not due to additive genetic effects, and caution is advised with

interpretation of this proxy. Twenty of the 27 traits were
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(A) A model of equal amplification of genetic
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sex differences in the distribution of the pheno-

type, Y. G and E act through a core pathway that is

amplified in a sex-specific manner.
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amplification of G and E effects inmales compared
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intervals. Traits in blue are consistent (within their

90% CI) with the theoretical prediction. Figure S18

shows the same data alongside the predictions

under other theoretical models of male-female

variance ratios.
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consistent with the null model of pervasive joint amplification

(within 90% confidence interval [CI]; Figure 6B). This finding

may suggest a sharing of pathways between polygenic and envi-

ronmental effects for these traits (Figure 6A). Interesting excep-

tions include diastolic blood pressure, which was the strongest

outlier (p = 3:063 10� 12, single-sample z test), excluding

testosterone.
Sexually antagonistic selection
A hypothesized cause of sexual dimorphism is sexually antago-

nistic selection, in which some alleles are beneficial in one sex

but deleterious in the other.11,12,14,53,54 Sexually antagonistic se-

lection is difficult to study using traditional population genetics

methods because Mendelian inheritance equalizes autosomal

allele frequencies between the sexes at conception, thereby

erasing informative signals. One way around this limitation is to

examine allele frequency differences between the sexes in the

current generation, known as ‘‘selection in real time.’’14,55,56 In

this section, we consider a model of sexually antagonistic selec-

tion acting on a polygenic trait and use it to estimate the strength

of contemporary viability selection acting on the 27 traits we

analyzed.

Most theoretical models of sexually antagonistic selection on

a trait under stabilizing selection usually posit either highly

distinct male and female fitness optima or genetic variants

affecting traits antagonistically. Our findings on pervasive

amplification suggest that variant effects on traits tend to

have concordant signs. However, under pervasive amplifica-

tion, a somewhat surprising intuition arises. Alleles affecting a

trait may frequently experience sexually antagonistic selection

in the case in which trait optima for males and females are

very distinct (Figure 7B) and for the case in which they are

similar (Figure 7A).

We developed a theoretical model of sexually antagonistic

viability selection on a single trait that builds on this intuition. The

model relates sex-specific effects on a complex trait to the diver-
gence in allele frequency between males

and females (measured as FST
57,58)

because of viability selection ‘‘in real
time’’; i.e., acting in the current generation between conception

and the time of sampling. We derive the expected relationship

for each site i,

FST izAVGxSi; (Equation 1)

where

VfGxSg i = 2pið1 � piÞ
�
bm
i � bf

i

�2
;

and pi;b
m
i and bfi are the allele frequency of an allele at site i, its

effect on the trait in males, and its effect in females, respectively.

A is a constant parameter shared across all variants and can

therefore be interpreted as the effect of sexually antagonistic se-

lection on male-female divergence at variants associated with

the trait (STAR Methods). We estimated FST i for all sites i across

subsamples of various ancestry groups in the gnomAD data-

set.59 To estimate VfGxSg i at each site and for each trait, we

used our sex-stratifiedGWAS results. Because there is large het-

erogeneity in uncertainty of GxSex-genetic variance estimates,

we use a variance-weighted linear regression to estimate A

(see STAR Methods for the derivation of the variance of VfGxSg i
estimates and supplemental information for further details).

Recent work has shown that apparent sex differences in

autosomal allele frequencies within a sample are often due to a

bioinformatic artifact: mismapping of sequencing reads from au-

tosomes to sex chromosomes or vice versa.53,60,61 We identified

and excluded sites that are potentially vulnerable to this artifact

(supplemental information). In Figure 7D, we only show results

for gnomAD subsamples that are the closest in their genetic

ancestry to our UKB sample62 (results for other subsamples

are shown in Figures S19 and S20). Furthermore, given the

concerns of study recruitment biases,43,60 we place higher

confidence in results that replicate qualitatively across different

subsamples, even though we note that subsample-specific

selection signals may be real because sexually antagonistic

selection may act heterogeneously across groups.
Cell Genomics 3, 100297, May 10, 2023 9
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With these conservative criteria considered, we only find

evidence of sexually antagonistic polygenic selection on testos-

terone. In the non-Finnish sample, the largest of the three sam-

ples, the null hypothesis H0 : A = 0 in Equation 1 is rejected

(p < 0.05) only for testosterone (Z score = 2.2). Testosterone is

among the three strongest signals in the two other samples as

well, although none of the traits are statistically significant in

these samples.

DISCUSSION

Departing from previous studies that sought GxSex through sin-

gle loci or heritability analyses, we modeled GxSex as a mixture

of polygenic relationships across the genome. Our analysis sup-

ports pervasive context dependency of genetic effects on com-

plex traits, acting largely through amplification. Surprisingly,

even for some traits such as red blood cell count, previously

considered non-sex specific because of high genetic correla-

tions between sexes and a concordance in top GWAS hits, we

find evidence of substantial GxSex. The strong relationships

we find between amplification, environmental variance, and

phenotypic variance further point to its potential importance for

sex differences.

We have shown that considering the polygenic covariance

structure, including amplification signals, improves phenotypic

prediction for most traits. Its incorporation in PGSs is straightfor-

ward. We therefore recommend its broad application and further

building on our approach to improve clinical risk stratification

and other applications of PGSs.

Our findings may seem at odds with previous reports of

GxSex primarily consisting of sex-limited effects (i.e., no effect

in one of the sexes) or antagonistic effects (differences in

sign).63 In the supplemental information and Table S6, we illus-

trate that these apparent discrepancies may be rooted in

ascertainment biases. Therefore, limiting analyses to variants

with outsized sex differences provides a clouded picture of

polygenic GxSex.

Localization of GxSex signals can provide clues regarding the

modulators underlying amplification. Here, we proposed one

such modulator, testosterone, and found a correlation between

testosterone levels and the magnitude of genetic effect on whole

body fat mass. The opposite signs of these correlations in fe-

males and males may reflect the discrepant relationship be-

tween testosterone and these traits at the phenotypic level.

Our approach for studying GxSex in complex physiological

traits can be adopted to study the moderation of polygenic ef-

fects by other environments. Starting out with sex as an environ-

mental variable offers a methodological advantage. The study of

context dependency in humans is often complicated by

study participation biases, leading to a genetic ancestry struc-

ture that confounds genotype-phenotype associations,43,64–66

reverse causality between the phenotype and environment vari-

able, collider bias, gene-by-environment correlation, and other
(C) Two examples of the weighted least-squares linear regression performed to e

with a trait (A in A and Equation 1). Each point shows one SNP. Size is proportio

(D) Z scores (90% non-parametric bootstrap CI) estimated through 1,000 resam

colored estimates correspond to the examples in (B) and (C).
problems.67–69 Focusing on sex as a case study circumvents

many of these ‘‘usual suspect’’ problems; for example, problems

involving the phenotype causally affecting sex are unlikely. This

is an important benchmark for future studies of environmental

modulation because of the methodological advantage of sex

as an environmental variable and because sex is almost always

measured; so insight into sex differences in genetic effects can

be incorporated straightforwardly in future studies and in clinical

risk prediction. Here, we showed that, for most of the traits

considered, modeling polygenic GxSex (as opposed to individu-

ally estimating sex-specific effects at each site; Figure S12)

yields sex-specific predictors that outperform standard additive

PGSs.

Finally, we developed a model—the first to our knowledge—

that considers how GxSex may fuel sexually antagonistic selec-

tion on complex traits. Over long evolutionary timescales, the

two scenarios depicted in Figures 7A and 7B may lead to

different predictions about the long-term maintenance of

GxSex genetic variance. Regardless, in both cases, alleles that

underlie GxSex may experience sexually antagonistic selection.

We found suggestive signals of sexually antagonistic selection

on variation associated with testosterone levels (also see related

results byRuzicka et al.56). The signal for our inference of selection

issystematicallele frequencydifferencesbetweenadultmalesand

females, which are consistent with contemporary viability selec-

tion. The severity, age of onset, and prevalence of nearly all dis-

eases are sexually dimorphic.70 These signalsmay therefore point

to a related disease that differentially affects lifespan in the two

sexes, such as immune system suppression, diabetes, cancers,

and hypertension.71–74 Recently, high testosterone levels have

been linked to increased rates of mortality and cancer in women

but decreased rates in men.75,76 However, the testosterone result

isalsoconsistentwithotheraccounts, suchas testosteronehaving

opposing effects on the propensity to participate in a study in the

two sexes. Further validation is therefore required tobetter test hy-

pothesesof sexuallyantagonistic selection; for example, in studies

with no recruitment biases (or at least distinct recruitment biases).

In this work, we have shown that amplification of the magni-

tude of polygenic effects may be important to consider as a

driver of sex differences and their evolution. Our approach

included the flexible modeling of genetic effect covariance

among the sexes, as well as various subsequent analyses

exploring the implications of these covariance structures. We

hope this study can inform future work on the context specificity

of genetic effects on complex traits.

Limitations of the study
Study participation in large biobanks like the UKB differs by

sex,77 and work by Pirastu et al.60 further argued that allele fre-

quency differences between males and females may reflect

sex-specific recruitment biases. However, a recent study by

Benonisdottir and Kong43 found no evidence of sex-specific

genetic associations with UKB participation, and another by
stimate the strength of sexually antagonistic selection on variants associated

nal to each point’s regression weight.

pling iterations of the weighted linear regression of (B) for each trait. The two
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Kasimatis et al.53 showed that many apparent associations of

autosomal genotypes and biological sex in the UKBwere instead

primarily due to a bioinformatic artifact: mis-hybridization of

autosomal genotyping probes with sex chromosomes. Even still,

subtle recruitment biases affectingmale and female participation

differently remains a possible caveat to our conclusions. For the

analysis of natural selection, the replication of signals of selec-

tion in multiple samples may lend some credence to our infer-

ence. Nevertheless, in medical datasets based on recruitment

of participants via referring physicians, recruitment biases may

still plausibly be shared across studies.

Another limitation of the study is the inability to directly test the

hypothesis about pervasive, joint amplification of genetic and

environmental effects. While the data available to us are consis-

tent with the hypothesis (Figures 6 andS19), they are also consis-

tent with other possible explanations and susceptible to caveats.

For example, our proxy for environmental variance includes, to an

unknownextent, genetic variance,which is notwell taggedby the

UKBgenotype array. Further study is required to robustly test this

hypothesis, but it may require detailed data on environmental

effects on a complex trait in females and males.
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19. Oliva, M., Muñoz-Aguirre, M., Kim-Hellmuth, S., Wucher, V., Gewirtz,

A.D.H., Cotter, D.J., Parsana, P., Kasela, S., Balliu, B., Viñuela, A., et al.

(2020). The impact of sex on gene expression across human tissues. Sci-

ence 369, eaba3066. https://doi.org/10.1126/science.aba3066.

20. Clayton, J.A., and Collins, F.S. (2014). Policy: NIH to balance sex in cell

and animal studies. Nature 509, 282–283. https://doi.org/10.1038/

509282a.

21. Clayton, J.A. (2016). Studying both sexes: a guiding principle for biomed-

icine. FASEB J. 30, 519–524. https://doi.org/10.1096/fj.15-279554.

22. (2022). Nature journals raise the bar on sex and gender reporting in

research. Nature 605, 396. https://doi.org/10.1038/d41586-022-01218-9.

23. Sinnott-Armstrong, N., Naqvi, S., Rivas, M., and Pritchard, J.K. (2021).

Gwas of three molecular traits highlights core genes and pathways along-

side a highly polygenic background. Elife 10, e58615–e58635. https://doi.

org/10.7554/eLife.58615.

24. Hooven, C. (2021). T: The Story of Testosterone, the Hormone that Dom-

inates and Divides Us (Henry Holt and Co.).

25. Flynn, E., Tanigawa, Y., Rodriguez, F., Altman, R.B., Sinnott-Armstrong,

N., and Rivas, M.A. (2021). Sex-specific genetic effects across bio-

markers. Eur. J. Hum. Genet. 29, 154–163. https://doi.org/10.1038/

s41431-020-00712-w.

26. Bernabeu, E., Canela-Xandri, O., Rawlik, K., Talenti, A., Prendergast, J.,

and Tenesa, A. (2021). Sex differences in genetic architecture in the UK

Biobank. Nat. Genet. 53, 1283–1289. https://doi.org/10.1038/s41588-

021-00912-0.

27. Muir, W., Nyquist, W.E., and Xu, S. (1992). Alternative partitioning of the

genotype-by-environment interaction. Theor. Appl. Genet. 84, 193–200.

https://doi.org/10.1007/BF00224000.

28. Robertson, A. (1959). The sampling variance of the genetic correlation co-

efficient. Biometrics 15, 469. https://doi.org/10.2307/2527750.
29. Falconer, D.S. (1952). The problem of environment and selection. Am. Nat.

86, 293–298.

30. Fry, J.D. (1992). The mixed-model analysis of variance applied to quanti-

tative genetics: biological meaning of the parameters. Evolution 46,

540–550. https://doi.org/10.2307/2409870.

31. Yamada, Y. (1962). Genotype by environment interaction and genetic cor-

relation of the same trait under different environments. Jpn. J. Genet. 37,

498–509. https://doi.org/10.1266/jjg.37.498.

32. Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes Con-

sortium; Ye, C.J., Price, A.L., and Zaitlen, N. (2016). Transethnic genetic-

correlation estimates from summary statistics. Am. J. Hum. Genet. 99,

76–88. https://doi.org/10.1016/j.ajhg.2016.05.001.

33. Galinsky, K.J., Reshef, Y.A., Finucane, H.K., Loh, P.-R., Zaitlen, N., Patter-

son, N.J., Brown, B.C., and Price, A.L. (2019). Estimating cross-population

genetic correlations of causal effect sizes. Genet. Epidemiol. 43, 180–188.

https://doi.org/10.1002/gepi.22173.

34. Ni, G., Moser, G., Schizophrenia Working Group of the Psychiatric Geno-

mics Consortium; Wray, N.R., and Lee, S.H. (2018). Estimation of genetic

correlation via linkage disequilibrium score regression and genomic

restricted maximum likelihood. Am. J. Hum. Genet. 102, 1185–1194.

https://doi.org/10.1016/j.ajhg.2018.03.021.

35. Shi, H., Mancuso, N., Spendlove, S., and Pasaniuc, B. (2017). Local ge-

netic correlation gives insights into the shared genetic architecture of com-

plex traits. Am. J. Hum. Genet. 101, 737–751. https://doi.org/10.1016/j.

ajhg.2017.09.022.

36. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.-

R., ReproGen Consortium; Psychiatric Genomics Consortium; Genetic

Consortium for Anorexia Nervosa of the Wellcome Trust Case Control

Consortium 3; and Duncan, L., et al. (2015). An atlas of genetic correlations

across human diseases and traits. Nat. Genet. 47, 1236–1241. https://doi.

org/10.1038/ng.3406.

37. DiMarco, M., Zhao, H., Boulicault, M., and Richardson, S.S. (2022). Why

‘‘sex as a biological variable’’ conflicts with precision medicine initiatives.

Cell Rep. Med. 3, 100550. https://doi.org/10.1016/j.xcrm.2022.100550.

38. Lumish, H.S., O’Reilly, M., and Reilly, M.P. (2020). Sex differences in

genomic drivers of adipose distribution and related cardiometabolic disor-

ders: opportunities for precision medicine. Arterioscler. Thromb. Vasc.

Biol. 40, 45–60. https://doi.org/10.1161/ATVBAHA.119.313154.

39. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An expanded view of com-

plex traits: from polygenic to omnigenic. Cell 169, 1177–1186. https://doi.

org/10.1016/j.cell.2017.05.038.

40. Shi, H., Kichaev, G., and Pasaniuc, B. (2016). Contrasting the genetic ar-

chitecture of 30 complex traits from summary association data. Am. J.

Hum. Genet. 99, 139–153. https://doi.org/10.1016/j.ajhg.2016.05.013.

41. Sella, G., and Barton, N.H. (2019). Thinking about the evolution of complex

traits in the era of genome-wide association studies. Annu. Rev. Genomics

Hum. Genet. 20, 461–493. https://doi.org/10.1146/annurev-genom-

083115-022316.

42. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J.,

Schizophrenia Working Group of the Psychiatric Genomics Consortium;

Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score

regression distinguishes confounding from polygenicity in genome-wide

association studies. Nat. Genet. 47, 291–295. https://doi.org/10.1038/

ng.3211.

43. Benonisdottir, S., and Kong, A. (2022). The genetics of participation:

method and analysis. Preprint at bioRxiv. https://doi.org/10.1101/2022.

02.11.480067.

44. Lynch, M., and Walsh, B. (1998). Genetics and Analysis of Quantitative

Traits, 1st ed. (Sinauer Associates).

45. Urbut, S.M., Wang, G., Carbonetto, P., and Stephens, M. (2019). Flexible

statistical methods for estimating and testing effects in genomic studies

with multiple conditions. Nat. Genet. 51, 187–195. https://doi.org/10.

1038/s41588-018-0268-8.
Cell Genomics 3, 100297, May 10, 2023 13

https://doi.org/10.1093/genetics/85.1.171
https://doi.org/10.1093/genetics/85.1.171
https://doi.org/10.1111/j.1558-5646.2009.00934.x
https://doi.org/10.1111/j.1558-5646.2009.00934.x
https://doi.org/10.1073/pnas.1501339112
https://doi.org/10.1371/journal.pgen.1006170
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref15
https://doi.org/10.1001/jamapsychiatry.2013.268
https://doi.org/10.1001/jamapsychiatry.2013.268
https://doi.org/10.1111/eva.12244
https://doi.org/10.1111/evo.14394
https://doi.org/10.1111/evo.14394
https://doi.org/10.1126/science.aba3066
https://doi.org/10.1038/509282a
https://doi.org/10.1038/509282a
https://doi.org/10.1096/fj.15-279554
https://doi.org/10.1038/d41586-022-01218-9
https://doi.org/10.7554/eLife.58615
https://doi.org/10.7554/eLife.58615
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref24
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref24
https://doi.org/10.1038/s41431-020-00712-w
https://doi.org/10.1038/s41431-020-00712-w
https://doi.org/10.1038/s41588-021-00912-0
https://doi.org/10.1038/s41588-021-00912-0
https://doi.org/10.1007/BF00224000
https://doi.org/10.2307/2527750
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref29
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref29
https://doi.org/10.2307/2409870
https://doi.org/10.1266/jjg.37.498
https://doi.org/10.1016/j.ajhg.2016.05.001
https://doi.org/10.1002/gepi.22173
https://doi.org/10.1016/j.ajhg.2018.03.021
https://doi.org/10.1016/j.ajhg.2017.09.022
https://doi.org/10.1016/j.ajhg.2017.09.022
https://doi.org/10.1038/ng.3406
https://doi.org/10.1038/ng.3406
https://doi.org/10.1016/j.xcrm.2022.100550
https://doi.org/10.1161/ATVBAHA.119.313154
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.ajhg.2016.05.013
https://doi.org/10.1146/annurev-genom-083115-022316
https://doi.org/10.1146/annurev-genom-083115-022316
https://doi.org/10.1038/ng.3211
https://doi.org/10.1038/ng.3211
https://doi.org/10.1101/2022.02.11.480067
https://doi.org/10.1101/2022.02.11.480067
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref44
http://refhub.elsevier.com/S2666-979X(23)00063-0/sref44
https://doi.org/10.1038/s41588-018-0268-8
https://doi.org/10.1038/s41588-018-0268-8


Article
ll

OPEN ACCESS
46. Pasquali, R. (2006). Obesity and androgens: facts and perspectives. Fertil.

Steril. 85, 1319–1340. https://doi.org/10.1016/j.fertnstert.2005.10.054.

47. Domingue, B.W., Kanopka, K., Mallard, T.T., Trejo, S., and Tucker-Drob,

E.M. (2022). Modeling interaction and dispersion effects in the analysis

of gene-by-environment interaction. Behav. Genet. 52, 56–64. https://

doi.org/10.1007/s10519-021-10090-8.

48. Liu, D., Sartor, M.A., Nader, G.A., Gutmann, L., Treutelaar, M.K., Pistilli,

E.E., Iglayreger, H.B., Burant, C.F., Hoffman, E.P., and Gordon, P.M.

(2010). Skeletal muscle gene expression in response to resistance exer-

cise: sex specific regulation. BMC Genom. 11, 659. https://doi.org/10.

1186/1471-2164-11-659.

49. Lutz, S.Z., Wagner, R., Fritsche, L., Peter, A., Rettig, I., Willmann, C., Feh-
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62. Privé, F., Aschard, H., Carmi, S., Folkersen, L., Hoggart, C., O’Reilly, P.F.,
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METHOD DETAILS

UK Biobank sample characteristics
TheUKBiobank is an extensive database that contains awide variety of phenotypic and genotypic information of around half amillion

participants aged 40-69 at recruitment.78

In this study, we considered 337,111 individuals who passed quality control (QC) checks, which included the removal of samples

identified by the UK Biobank with sex chromosome aneuploidy or self-reported sex differing from sex determined from genotyping

analysis. We excluded related individuals (3rd-degree relatives or closer) as identified by the UK Biobank in data field 22020. To

reduce potential population structure confounding, we further limited our sample to individuals identified by the UK Biobank as

‘‘White British’’ in data field 22006. These are individuals who both self-identified as White and as British and were additionally

very tightly clustered in the genetic principal component space.78,80 Individuals who had withdrawn from the UK Biobank by the

time of this study were removed. For each phenotype, we also removed individuals who had missing data for the specified pheno-

type. These procedures left us with between 255,426 to 336,551 individuals in the analysis for each trait.

Expectations for sex-specific heritabilities with no GxSex
In the section ‘‘The limited scope of analyzing GxSex via heritability differences and genetic correlations,’’ we report our observation

that, for most traits examined, sex-specific heritabilities (i.e., estimated independently from sex-stratified GWAS) were both higher

than the heritability in the combined sample. Here, we explain why this observation is inconsistent with a simple model in which

genetic effects are the same across the sexes.

Under a simple additive model of variance in a trait Y within each sex Z,

Var½Y jZ� = Var½GjZ�+Var½EjZ�; (Equation 2)

where Y ;G;E represent the trait value, additive effect, and environmental effect (including all non-genetic context aside from sex),

respectively. Under this model, the sex-specific heritability h2z is

h2
z =

Var½GjZ�
Var½GjZ�+Var½EjZ� : (Equation 3)

Therefore, sex differences in heritability are either due to sex differences in genetic variance, in environmental variance, or both. If

genetic effects are equal, differences in environmental variance alone could cause heritability differences (Figure 1C, first model). But

as we show below, the heritability in the combined sample cannot be smaller than both sex-specific heritabilities.

We assume as before that allele frequencies are highly similar between males and females. Since genetic effects are equal, this

implies

Var½GjZ = m�zVar½GjZ = f �:
For the environmental variance, we have that

Var½E� = EZ ½Var½EjZ��+VarZ ½E½EjZ�� = EZ ½Var½EjZ��+ 0 = PðZ = mÞVar½EjZ = m�+PðZ = fÞVar½EjZ = f �% max
z˛ fm;fg

Var½EjZ = z�:
(Equation 4)

The first equality follows from the law of total variance. In the second equality, we have assumed that there are no mean sex dif-

ferences in the environmental effects (or, in practice in our analysis and as routine in other analyses, that mean phenotypic sex dif-

ferences have been subtracted out), giving

E½EjZ = m� = E½EjZ = f � = E½E�:
Equation 4 shows that the combined environmental variance cannot be greater than the larger of the two sex-specific environ-

mental variances. It follows that if the genetic variance is equal in both sexes, then the heritability in the combined sample cannot

be smaller than both of the sex-specific heritabilities,

h2 =
Var½G�

Var½G�+Var½E�R
Var½G�

Var½G�+ max
z˛ fm;fg

Var½EjZ� = min
z˛ fm;fg

h2
Z : (Equation 5)
Multivariate adaptive shrinkage (mash)
We used multivariate adaptive shrinkage (mash) to examine correlation and differences in magnitude of SNP effects between males

and females.45 mash is an adaptive shrinkage method81 that improves upon previous methods of estimating and comparing effects

across multiple conditions by flexibly allowing for a mixture of effect covariance patterns between conditions and requiring only

summary statistics from each condition (including a point estimate of the effect and corresponding standard error for each SNP

and condition). Themethod adapts to patterns of sparsity, sharing, and correlation among the conditions to compute improved effect

estimates.
Cell Genomics 3, 100297, May 10, 2023 e2
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In this study, we set two conditions, male and female, and provided effect estimates and corresponding standard errors from

our male-specific and female-specific GWAS. mash learns from the data by estimating mixture proportions of various predefined

covariance matrices representing different patterns in effects. Using maximum likelihood, mash assigns low weights to matrices

that capture fewer patterns in the data, and higher weights to those that capture more.

Mixture weights for covariance structure between male and female effects
To interpret patterns of SNP effects between males and females, we inputted 66 hypothesis-based covariance matrices (Figure S2)

spanning a range of correlations and relative magnitudes of effects between males and females. We used a random subset of all

SNPs for mash to learn the covariance mixture weights. In order for the random subset to contain approximately independent

SNPs and capture the weight of SNPs with no effect (Figure S2), we created a subset of SNPs for each trait by taking a random

SNP from each of 1703 approximately independent LD blocks estimated for Europeans.79 mash can also generate data-driven

covariancematrices that capture SNP effects in the data, but we did not use this feature since the data-drivenmatrices had negligible

differences from our hypothesized matrices (in terms of l 2 norm) and were less interpretable.

For each trait, we repeat this weight-learning step 100 times, sampling the SNPs from the 1703 LDblockswithout replacement to fit

themashmodel and generate mixture proportions. We then take the average proportion for each covariance matrix as an estimate of

its weight, effectively treating each of the 100 samples as i.i.d. draws.

Choice of SNPs used to estimate male-female effect covariance
We examined the effect of using a random subset taken from different p-value thresholds [1, 5e-2, 1e-5, 5e-8] while selecting from LD

blocks. By doing so, we can examine differences in the distribution of weights across the p-value thresholds. We performed this test

on height, BMI, testosterone, and BMI-adjusted waist:hip ratio. For each trait, weight placed on the no-effect matrix decreased as we

reduced the p-value threshold (Figure S4A). Patterns of weights for non-null effect matrices varied across the traits (Figures S4B and

S4C). Since mash considers the proportion of null effects and sex-specific, SNP-specific noise; together with the fact that for com-

plex traits, less significant associations may still reflect valuable signal, we decided on using the whole set of SNPs to sample from

when estimating mixture proportions.

Simulating equal genetic effects and heterogeneous estimation noise among the sexes
To ensure that mash was not mistaking sex differences in estimation noise (e.g. via differences in the extent of environmental vari-

ance) to be differences in the magnitude of genetic effects, we performed a simulation study. In short, samples of males and females

were generated under the model given by Equation 2. Genetic effects were set as equal, but the environmental variance differed

among the sexes. We then perform a GWAS on both samples and input the simulated GWAS results into mash, and test whether

the estimated mixture weights spuriously suggest the presence of GxSex. We performed this simulation on a grid of parameters,

including heritabilities in males set to either 5% or 50%, female to male environmental variance ratio of 1, 1.5 or 5; and 100, 1,000

or 10,000 causal SNPs.

First, we created a sample of 300K individuals with randomly assigned sex. We then sampled genotypes for all individuals consist-

ing of 20K SNPs by sampling from the observed distribution of allele frequencies from UK Biobank’s imputed data,82 assuming link-

age equilibrium. From the 20K SNPs, we portioned out the predetermined number of causal SNPs and assigned effect sizes by sam-

pling from a Standard Normal distribution. We set the environmental variance for males using the equation

Var½EjZ = m� : =
Var½GjZ = m��1 � h2

m

�
h2
m

=

�P
i = 0

b2
i 2pið1 � piÞ

��
1 � h2

m

�
h2
m

(Equation 6)

where Var½EkZ = m� is the simulated environmental variance for males,GjZ = m is the genetic effect in amale, h2m is the heritability in

males and bi and pi are the effect size and allele frequency at site i, which are equal for males and females. We multiplied

Var½EkZ = m� by the predetermined environmental variance ratio to obtain the environmental variance for females Var½EkZ = f�.
Afterwards, for each individual j with sex zj, we sampled the environmental effect Ej as

Ej � Nð0;Var½E��Z = zj�:
Phenotypes were then set using the following additive model,

yj =
X
i = 0

bixij +Ej (Equation 7)

where yj is the phenotypic value for individual j and xij is the number of effect allele copies at the ith causal SNP for the jth individual.

With the phenotype, genotype and environmental effect set, we obtained the estimated effect sizes, fbbig, using least squares simple

linear regression for all 20K SNPs and used the estimated effect sizes and corresponding standard errors as input into mash.
e3 Cell Genomics 3, 100297, May 10, 2023
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For nearly all parameters, out of the weights on matrices other than the null matrix, the vast majority was placed on the matrix for

perfect correlation, equal magnitude (Figure S5). As the number of causal SNPs increased, the weight on the no-effect covariance

matrix decreased accordingly. These results suggest that mash was not grossly mistaking differences in environmental variance as

amplification.

Simulating sex-biased amplification
To evaluate whethermash accurately captures sex-biased amplification of genetic effects (a measure we have used in the x-axis of

Figures 4A and 4B), we followed the same simulation procedure described in the Section ‘‘Simulating equal genetic effects and het-

erogeneous estimation noise among the sexes’’. However, instead of using equal genetic effects in males and females, we sampled

genetic effects from pre-specified covariancematrices (Figure S6 left-hand panel). We set the female tomale environmental variance

ratio as 1.2 and the heritability as 0.5.We generated data from (A) amodel in which all genetic effects are sampled fromamatrix where

male and female effects are equal, (B) a model in which 86% of the genetic effects are sampled from a matrix where effects between

the sexes are equal, and 14%of the effects are sampled from amatrix where the female effect sizemagnitude is 4 times that of males,

and (C) a model in which 86% of effects are sampled from a matrix where effects between sexes are equal, and 14% of effects are

sampled from a matrix of only female-specific effects. After simulating sex-specific GWAS on the three models, we input the results

into mash to estimate mixture weights. We repeated this simulation procedure 100 times for each model.

For model (A), the equal effect matrix received 78% of the weight, and the difference between male-larger and female-larger

magnitude was 1% (Figure S6). For model (B), 67% of the weight was placed on the matrix for equal effects. The weight difference

betweenmale-larger and female-larger magnitude was 13%. Inmodel (C), 69% of the weight was on thematrix for equal effects, and

the difference between male-larger and female-larger magnitude was 16%. These simulation results therefore suggest some

overestimation of the proportion of SNPs with magnitude differences. However, the measure of ‘‘sex-biased amplification’’ matched

that of the pre-specified generativemodels up to an error of 2%. Therefore, the simulations suggest that ‘‘sex-biased amplification’’ is

measured accurately in our estimation procedure.

Testosterone as an amplifier
We tested amodel of testosterone as amodulator of magnitude differences inmales and females.We first split individuals by sex and

for each sex, created 10 bins of testosterone levels. We adjusted one of the 10 bins to have testosterone levels overlap between

males and females. The overlapping testosterone bin was based on fewer individuals (�800) compared to the other bins (�2200).

For each trait, each of the sexes, and within each bin, we performed a simple linear regression of trait values to the PGS for the trait

(using a PGS based on both-sex summary statistics (supplemental information)). We interpret the estimated coefficient for the effect

of the PGS as a proxy for the magnitude of polygenic effect. Finally, we summarized the relationship between testosterone level and

magnitude of polygenic effect across bins using the Pearson correlation between the two.

To mitigate the possible effects of confounding (of testosterone and magnitude of polygenic effect) or reverse causation

(the magnitude of polygenic effect on the focal trait causally affecting testosterone levels) we employed a version of Mendelian

Randomization83,84 of the same analysis (Figure S15). Namely, we replaced testosterone levels of each individual with their PGS

for testosterone. Here, given the near-zero genetic correlation between males and females, we used our sex-specific PGS for

each sex; otherwise, the analysis is unchanged.

We also examined whether participants’ age may have confounded the relationship between testosterone and polygenic effect. In

this analysis, instead of using the polygenic effect as the response variable across bins, we used the polygenic effect residualized for

mean age in the bin and examined the effect of an individual’s polygenic score on the residual (Figure S16).

Model of shared amplification
Here, we suggest a null model in which amplification is shared between genetic and environmental effects. We then suggest a pre-

diction that the model yields and explain how we tested this prediction across traits (Figure 6).

If an amplifier is shared, it may be modeled as having the same scalar multiplier effect on genetic and environmental effects.

Consider the within-sex additive model of Equation 1 in the section ‘‘The limited scope of analyzing GxSex via heritability differences

and genetic correlations’’ above. For a phenotype value Yz in sex z˛ fm; fg
Yz = c+Gz +Ez; (Equation 8)

Where c is a constant, Ez is the environmental effect and

Gz =
X
site i

xib
z
i (Equation 9)

is the polygenic effect where bzi is the effect of an allele at site i (say theminor allele) in sex Z and xi is the number of copies of the allele.

We assume here for simplicity that male genetic effects relate to female effects solely through a shared polygenic amplification con-

stant, a,

bm
i = abf

i ci; a> 0: (Equation 10)
Cell Genomics 3, 100297, May 10, 2023 e4
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Allele frequencies are once again assumed to be close to equal between males and females, since due to random segregation of

alleles during meiosis, genotype frequencies at autosomal sites are independent of sex; and further assuming no substantial

interaction between genotype and sex affecting participation in UKB.43 Consequently, differences in polygenic effect distributions

between males and females are solely based on GxSex, and thus:

Var½Gm� = a2Var½Gf �: (Equation 11)

The model we would like to test is one where the amplification of environmental effects can also be simplified to the same scalar

multiplier,

Em = aEf ; and Var½Em� = a2Var½Ef �: (Equation 12)

Hence, with equal amplification,

Var½Gm�
Var½Gf � =

Var½Em�
Var½Ef � (Equation 13)

To test the model of shared amplification between environmental and polygenic effects (Equation 8) we obtained the genetic and

environmental variance for males and females based on the following relationships,

Var½Gz� = h2Var½Yz� (Equation 14)

and

Var½Ez� =
�
1 � h2

�
Var½Yz�; (Equation 15)

where Var½Gz�;Var½Ez�, and Var½Gz� are the additive genetic, environmental, and phenotype variances, respectively. Estimates of the

sex-specific heritabilities, h2z , were obtained from previous estimates using LD Score Regression (supplemental information).

Representingmale genetic or environmental variance as x, and the corresponding female variance as y, we derived standard errors

for the ratio of male to female variance using the 2nd-order Taylor approximation for the standard error of a ratio of estimators of x

and y,

SE

�bxby
�

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�bxby
�s
y

E½bx�
E½by�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½bx�
E½bx�2 +

Var½by�
E½by �2 � 2Cov½bx; by �

E½bx�E½by �
s

z
bxby

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½bx�2bx2

+
SE½by �2by2

s
(Equation 16)

assuming independence between bx and by since they are statistics of independent sampling distributions (independent samples of

males and females). The standard errors of the genetic and environmental variance were estimated using the law of total variance for

a product of two random variables. For ba and bb, unbiased estimators of the two parameters a and b, respectively, we get

SE½ba bb� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½ba�2SE½ bb�2 +E½ba�2SE½ bb�2 +E½ bb�2SE½ba�2q

:

Plugging in the point estimate ba for E½ba� = a and the point estimate bb for E½ bb� = b,

cSE ½ba bb� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½ba�2SE½ bb�2 + ba2

SE½ bb�2 + bb2
SE½ba�2q

: (Equation 17)

In this case, a represents the phenotypic variance for a sex, Var½Yz�; and b represents either h2z for estimation of genetic variance or

ð1 � h2z Þ for estimation of environmental variance. Lastly, to obtain the standard error of the phenotypic variance, we used 100 boot-

strapped samples Var½Yz�i of estimates of the phenotypic variance in sex z,

cSE ½ba� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100
i = 1



Var½Yz�i � Var½Yz�j

�2

100 � 1

vuuut
Finally, for each trait, we estimated ~Z, the ratio of the two male-female ratios (environmental and genetic, y and x axes in Figure 6,

respectively), and its standard error, SE½ ~Z�, using the same method as in Equation 16. Under the null hypothesis of equal environ-

mental and genetic amplification (Equation 8),

H0 : E½Z� = 0; (Equation 18)

where

Z =
~Z � 1

SE½ ~Z� :

In Figure 6, we approximated 90%confidence intervals on Z by treating it as a Z score, i.e., further treating Z as a Standard Normal.
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A model of sexually antagonistic selection
We developed a model relating sex differences in additive effects on a trait at a biallelic locus (bm and bf ) and divergence in allele

frequencies. Our model resembles that of Cheng and Kirkpatrick14 who developed a similar model relating allele-frequency differ-

ences and sex bias in gene expression. In short, we modeled sexually antagonistic, post-conception viability selection on a focal

complex trait. We assumed allele frequencies in adult males, pm, and adult females, pf , are at equilibrium, i.e. do not change in

consecutive generations. Under these conditions, we derive the relationship

FSTzAVGxSex;

where FST
57 is the fixation index with respect to themale and female subpopulations, i.e., the proportion of heterozygosity in the pop-

ulation that is due to allelic divergence between the sexes. VGxSex is defined as

VGxSex : = 2pð1 � pÞðbm � bfÞ2; (Equation 19)

where p is the allele frequency in zygotes. A is a parameter that, importantly, is shared across all variants affecting the trait and can be

thought of as the intensity of sexually antagonistic selection acting on genetic variation for the trait in question.

In our model, allele frequencies at the autosomal locus are assumed to be equal in males and female zygotes. FST at adulthood

takes the form

FST : =
Varz½pz�
pð1 � pÞ =

E
�
p2
z

 � p2

pð1 � pÞ =
p2
m +p2

f � �
pm +pf

2

�2
pð1 � pÞ =

ðpm � pfÞ2
4pð1 � pÞ ; (Equation 20)

where

p =
pm +pf

2
:

If we further assume a near-1:1 sex ratio such that pzp,

FSTz
ðpm � pf Þ2
4pð1 � pÞ : (Equation 21)

Sexually antagonistic selection acting on viability will cause divergence in allele frequencies between adult males and females. We

write the relative viabilities of the homozygote for the reference allele, the heterozygote and the homozygote for the effect allele as

1T1+dzSzT1+Sz for each sex z˛ fm;fg. The selection coefficient Sz and dominance coefficient dz can be frequency-dependent, in

which case these coefficients take their values at equilibrium. We can write the additive selection coefficient of the effect allele as

sz = ½p + ð1 � 2pÞdz�Sz: (Equation 22)

Assuming that zygotes are at Hardy-Weinberg equilibrium, the allele frequency in each sex at adulthood is

pz zp+pð1 � pÞsz; (Equation 23)

where we neglected terms of order s2z
85. Plugging Equation 23 into Equation 21, the divergence between males and females post-

selection is

FSTz
1

4
pð1 � pÞðsm � sf Þ2: (Equation 24)

Wemodel the strength of viability selection acting onmales and females as linear with the additive effect on a focal trait in each sex,

sz = azbz; (Equation 25)

and recalling the simplifying assumption that allele frequencies are at equilibrium under sexually antagonistic viability selection at the

locus, such that selection favoring an allele in one sex is balanced by selection against that allele in the other sex,

sf = � sm: (Equation 26)

If bm = bf , then Equation 24 simplifies to

FST zpð1 � pÞðafbfÞ2 =
a2f
2
VG: (Equation 27)

where

VG = 2pð1 � pÞbf
2: (Equation 28)

is the additive genetic variance. However, when bm does not strictly equal bf , Equation 25, 26 together imply
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bm + bf =
bm + bf

bm � bf

ðbm � bf Þ =

sm
am

� sm
af

sm
am
+ sm

af

ðbm � bfÞ =
af � am
af + am

ðbm � bf Þ: (Equation 29)

Finally, using Equation 25,

sm � sf = ambm � afbf =
1

2
½ðam + afÞðbm � bfÞ + ðam � afÞðbm + bf Þ�; (Equation 30)

which together with Equation 29 gives

sm � sf =
1

2

�
ðam + afÞ + ðam � afÞðaf � amÞ

af + am

�
ðbm � bfÞ =

2amaf
am + af

ðbm � bfÞ: (Equation 31)

We denote the heritability due to GxSex at the locus as VGxSexd2pð1 �pÞðbm � bfÞ2 and the parameter relating this contribution

to the differentiation in allele frequencies as

A : = 2

�
amaf
am + af

�2

; (Equation 32)

and plugging Equation 31 into Equation 24, we get

FSTzAVGxSex: (Equation 33)

as given by Equation 1 in the section ‘‘sexually antagonistic selection.’’

Estimating the potential for sexually antagonistic selection on standing variation (A)
For each trait and gnomAD subsample (supplemental information), we estimated A using weighted least squares linear regression of

our estimate of FST (dFST Þ to our estimate of VGxSex ( bVGxSex), with weight w inversely proportional to our site-specific estimate of noise

in the estimate of VGxSex,

w =
1d

Var½ bVGxSex�
: (Equation 34)

To simplify the estimation of Var½ bVGxSex�; we treated the allele frequency p as perfectly estimated, and as independent of the allele

frequency in the GWAS sample—as different data are used in the GWAS (UK Biobank) and in the allele frequency estimation (gno-

mAD). Under these assumptions, d
Var½ bVGxSex� = Var

h
2pð1 � pÞcD2

i
= ½2pð1 � pÞ�2Var½ðbbm � bbfÞ2

i
; (Equation 35)

and thus the task at hand is estimating Var½ðbbm � bbf Þ2�. Using the law of total variance,

Var½ðbbm � bbf Þ2
i
= Varbb f

h
Ebbm

h
ðbbm � bbfÞ2

���bbf

ii
+Ebb f

h
Varbbm

h
ðbbm � bbfÞ2

���bbf

ii
: (Equation 36)

We begin with the argument of the first term,

Ebbm

h
ðbbm � bbfÞ2

���bbf

i
= Ebbm

�bb2

m � 2bbm
bbf + bb2

f

��bbf


= m2

m + s2
m � 2mm

bbf + bb2

f ; (Equation 37)

where we denote

mz = E½bbz�; s2
z = Var½bbz� (Equation 38)

for each sex z˛ fm; fg: Plugging Equation 37 into the first term of Equation 36,

Varbb f

h
Ebbm

h
ðbbm � bbfÞ2

���bbf

ii
= Varbb f

�
m2
m + s2

m


+ Varbb f

�bb2

f � 2mm
bbf


= 0+Varbb f

�bb2

f � 2mm
bbf


= Varbb f

�bb2

f


+ 4Varbb f

½mm
bbf ��4mmCovbb f

�bb2

f ;
bbf


;

(Equation 39)

where the first and second step follow from the fact that m2
m + s2m is a constant. We can take note of the fact that bbz is Normally distrib-

uted around bz, and in particular that it has no skewness. Therefore,

Covbbz

�bb2

z ;
bbz


= E

�bb3

z

 � E½bbz�E
�bb2

z


= ðm3

z + 3mzs
2
z + gzs

3
z

� � mz

�
m2
z + s2

z

�
= 2mzs

2
z ; (Equation 40)

where gz = 0 is the skewness of bbz. We can also note that

Varbbz

�bb2

z


= Varbbz

h
ðszbz +mzÞ2

i
; (Equation 41)
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where we defined

bz =
bbz � mz

sz

;

and therefore bz is a Standard Normal and therefore b2
z is Chi-squared with one degree of freedom. Equation 41 now gives

Varbbz

�bb2

z


= Varbbz

�
s2
zb

2
z + 2szmzbz


= Varbbz

�
s2
zb

2
z


+ Var½2szmzbz� + Cov

�
s2
zb

2
z ;2szmzbz


= Var

�
b2
z


s4
z + 4Var½bz�m2

zs
2
z + 0 = 2s4

z + 4m2
zs

2
z :

(Equation 42)

Plugging Equations 40 and 42 into Equation 39, we find

Varbb f

h
Ebbm

h
ðbbm � bbfÞ2

���bbf

ii
= 2s4

f + 4m2
f s

2
f + 4m2

ms
2
f � 8mmmfs

2
f : (Equation 43)

We now turn to the second term of Equation 36. First,

Varbbm

h
ðbbm � bbfÞ2

���bbf

i
= Var

�bb2

m + 2bbm
bbf

��bbf


= Var

�bb2

m


+ 4s2

m
bb2

f � 4bbfCov
�bbm; bb2

m


:

(Equation 44)

Equations 40 and 42 again give us

Varbbm

h
ðbbm � bbfÞ2

���bbf

i
= 2s4

m + 4m2
ms

2
m + 4s2

m
bb2

f � 8mms
2
m
bbf ; (Equation 45)

which then gives

Ebb f

h
Varbbm

h
ðbbm � bbfÞ2

���bbf

ii
= 2s4

m + 4m2
ms

2
m + 4s2

m

�
s2
f + m2

f

� � 8mmmfs
2
m: (Equation 46)

Plugging Equations 43 and 46 into Equation 36, we obtain

Var½ðbbm � bbfÞ2
i
=

= 2
�
s4
m + s4

f

�
+ 4s2

ms
2
f + 4

�
m2
ms

2
m + m2

f s
2
f

�
+ 4

�
s2
mm

2
f + s2

f m
2
m

� � 8mmmf

�
s2
m + s2

f

�
:

(Equation 47)

Finally, we estimate mz with the GWAS-derived point estimate of the effect bbz and sz with its standard error, bsz = ½bbz�. Plugging
back into Equation 35, we obtaind

Var½ bVGxSex� = ½2pð1 � pÞ�2�2�bs4
m + bs4

f

�
+ 4bs2

mbs2
f + 4

�bb2

ms
2
m + bb2

f s
2
f

�
+ 4

�bs2
m
bb2

f + bs2
f
bb2

m

� � 8bbm
bbf

�bs2
m + bs2

f

�
: (Equation 48)

Using Equation 33, we estimate Fst with the estimator

cFst =
nst

dst

; (Equation 49)

where

nst = ðcpm � bpf Þ2 � SEðcpmÞ2 � SEð bpf Þ2; (Equation 50)
dst = 4bpð1 � bpÞ � SEðcpmÞ2 � SEð bpf Þ2;
and noting that

E½cFst �z E½nst�
E½dst� =

ðpm � pfÞ2 � VarðpmÞ+VarðpfÞ+E
n
SEðcpmÞ2

i
+E

h
SEð bpf Þ2

i
4pð1 � pÞ+VarðpmÞ2 +VarðpfÞ2 � E

n
SEðcpmÞ2

i
� E

h
SEð bpf Þ2

i = Fst; (Equation 51)

where in the first equality we approximated the expectation of a ratio with the ratio of expectations. Therefore, Equation 49 provides

an approximately unbiased estimator of Fst despite the absence of genotype frequencies.

To perform this estimation of A on the GWAS and Fst data, we used paired v and VGxSex points for all sites which passed all previous

stages of filtering.Weights were set by Equation 34 and follow Equation 48where bbm and bbf are theGWAS effect estimates as above,

and bsm and bsf are the GWAS standard errors (SE) estimates for the effect size of each site per trait.
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To minimize the possibility of LD between sites used in the analysis as much as possible, we used the approximately independent

LD blocks in Europeans79 as in Section ‘‘Mixture weights for covariance structure between male and female effects’’. Namely, we

subdivided the genome into 1703 approximately independent LD blocks as before. We iterated over the 1703 blocks and sampling

one site per block in a given iteration, using a sample of (up to) 1703 post-filtering sites to perform the weighted linear regression of

FST on VG3Sex: The slope of this regression was used as an estimate of A. We perform this estimation procedure 1,000 times and take

an average of Z scores (slope point estimates divided by their SE) as the final estimate ofA. In each replicate, we sample with replace-

ment m LD blocks from the m LD blocks which had at least one site within them post-filtering (supplemental information); we then

sample one site per resampled block. In Figure 7D, each point is the mean of the 1,000 samples of one site per LD block and

90% confidence intervals show the range between the 5th and 95th percentile of 10,000 bootstrap re-samplings of 1,000 samples,

calculating a new mean for each bootstrap.

In the main text, we focus on the results performed this estimation for Ashkenazi Jewish, Finnish, and Non-Finnish European pop-

ulations as the other ancestry group-stratified subsamples in gnomAD are further diverged from the UKB White British sample and

therefore our GWAS estimates are expected to be less portable.62,86We also performed a similar analysis usingUKBdata tomeasure

differentiation in allele frequencies between males and females, rather than an independent dataset (gnomAD) as in the main text.

Since individual level data was available in this case, we replaced Fst with LST , a measure developed by Ruzicka et al.56 Lst can

be thought of as site-specific Fst controlled for major axes of population structure differentiating males and females (Figure S20).
e9 Cell Genomics 3, 100297, May 10, 2023
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