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ABSTRACT Genome-wide association studies (GWAS) have revealed that many traits are highly polygenic, in that their within-
population variance is governed, in part, by small-effect variants at many genetic loci. Standard population-genetic methods for
inferring evolutionary history are ill-suited for polygenic traits: when there are many variants of small effect, signatures of natural
selection are spread across the genome and are subtle at any one locus. In the last several years, various methods have emerged for
detecting the action of natural selection on polygenic scores, sums of genotypes weighted by GWAS effect sizes. However, most
existing methods do not reveal the timing or strength of selection. Here, we present a set of methods for estimating the historical time
course of a population-mean polygenic score using local coalescent trees at GWAS loci. These time courses are estimated by using
coalescent theory to relate the branch lengths of trees to allele-frequency change. The resulting time course can be tested for evidence
of natural selection. We present theory and simulations supporting our procedures, as well as estimated time courses of polygenic
scores for human height. Because of its grounding in coalescent theory, the framework presented here can be extended to a variety of
demographic scenarios, and its usefulness will increase as both GWAS and ancestral-recombination-graph inference continue to progress.
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SOME of the most compelling examples of phenotypic
evolution come from time courses that reveal the pace
of evolution, either through observations across generations
(Cook et al. 1986; Grant and Grant 2002) or through changes
in the fossil record (Gingerich 1983; MacFadden 2005; Bell
et al. 2006). For many traits and species, it can be difficult to
ascertain whether these changes reflect genetic change. For
example, we have fairly detailed knowledge of human height
through time, but some changes in height are likely driven
by environmental and dietary changes (Stulp and Barrett
2016). Thanks to ancient DNA, we can now sometimes ob-
tain a partial picture of long-term genetic changes involving
relatively simple traits like pigmentation (Ludwig et al.
2009) or more complex traits (Mathieson et al. 2015). How-
ever, we are usually not fortunate enough to have access to
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genotype data from across time, and even when ancient DNA
are available, the resulting time courses will necessarily be
incomplete.

One alternative to direct measurement of phenotypes
through time is to reconstruct the history of a phenotype using
contemporary genetic data. Positive selection on simple ge-
netic traits drives large allele-frequency changes at the causal
loci and linked neutral alleles (Smith and Haigh 1974). There
are many procedures for detecting this kind of selection on
individual alleles and for dating and modeling their spread
through populations (Tajima 1989; Fay and Wu 2000; Sabeti
et al. 2002; Voight et al. 2006; Ronen et al. 2013; Garud et al.
2015; Crawford et al. 2017).

One obstacle to understanding the evolutionary basis of
phenotypes is the polygenic architecture of many traits. Com-
plex traits (traits affected by many genetic loci and by envi-
ronmental variation) are ill-suited to study by single-locus
methods. In recent years, genome-wide association studies
(GWAS) have made it possible to aggregate subtle evolution-
ary signals that are distributed across the many genetic loci
that are associated with a trait of interest (Turchin et al. 2012;
Berg and Coop 2014; Robinson et al. 2015; Field et al. 2016;
Racimo et al. 2018; Uricchio et al. 2018). For example, Field
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et al. (2016) developed the singleton density score (SDS) to
infer recent selection on a variety of traits among the ances-
tors of people in the United Kingdom. [As discussed below,
some empirical findings of these studies have not replicated
using effect-size estimates from less-structured GWAS sam-
ples, raising the possibility that the selection tests are sensi-
tive to residual population stratification (Berg et al. 2018;
Sohail et al. 2018). Nonetheless, given correct effect-size es-
timates, these methods are useful.]

Field et al. relied on the fact that selection distorts the gene
genealogies, or coalescent trees, at genetic loci under selec-
tion. In particular, loci under positive selection will have in-
creased in frequency in the recent past, leading to relatively
faster coalescence of lineages than if the allele frequency had
been constant [the method of Palamara et al. (2018) also
capitalizes on this idea]. The principle on which the SDS
relies is quite general: selection, even when its effect is spread
over many loci, leaves systematic signals in coalescent trees
at loci underlying trait variation.

The ancestral recombination graph (ARG) (Griffiths and
Marjoram 1997) collects coalescent trees at loci along a
recombining sequence, encoding information about allele-
frequency changes at each site, as well as recombination
events between sites. Recently, computational methods for
inferring ARGs have advanced considerably (Rasmussen
et al. 2014; Mirzaei and Wu 2016), allowing a range of ap-
plications (Palacios et al. 2015).

In this work, we consider ways in which ARGs—and in
particular, the coalescent trees of sites associated with a
phenotype—might be used to reconstruct the history of the
phenotype with which they are associated. The ARG-based
approaches we consider are motivated by polygenic traits,
and the population-mean level of a polygenic score (a pre-
diction of phenotype from an individual’s genotype) is the
target of estimation. We present methods for estimating the
time course of a population-mean polygenic score through
the past, as well as a test for assessing whether an estimated
time course is consistent with neutral evolution alone.

We begin by describing estimators and a hypothesis test for
phenotypic time courses based on previous theory. Next, we
apply these procedures to simulated data, using both true and
reconstructed ARGs. Finally, we apply our methods to some
human heightsin the GBR (Great Britain) subset of the 1000 Ge-
nomes panel (1000 Genomes Project Consortium et al. 2012),
using ARGs inferred by RENT+ (Mirzaei and Wu 2016).

Theory
Background and motivation

The ARG expresses the shared genealogical history of a
sample of individuals at a set of genetic loci, accounting for
correlations among neighboring loci that arise because of
linkage. The ARG contains a coalescent tree for every site
in the genome—these trees for specific sites are marginal
trees. Our methods make use of the marginal trees at a set
of sites that are associated with a phenotype. In particular, we
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concentrate on the information revealed by the number of
coalescent lineages that remain (i.e., that have not yet co-
alesced) at a time t in the past. The number of lineages at a
given time in the past is described by a stochastic process
called the ancestral process (e.g., Tavaré 1984).

The intuition behind the methods we present here is
shown in Figure 1. If an allele has been selected upward
in frequency in the recent past, then the number of chro-
mosomes carrying the allele will likely have increased.
Looking backward in time, the number of carriers in the
recent past is less than in the present, which forces an ex-
cess of recent coalescence events. Similarly, if an allele has
been selected downward recently, then there will tend to be
fewer recent coalescent events compared with the neutral
expectation. If the trait that has been under selection is
polygenic, then the signal at each locus associated with
the trait will be smaller, and its strength and direction will
depend on the effect size at the locus. In Appendix A, we
derive the relationship between the rate of coalescence and
selection on the phenotype. We show that phenotypic se-
lection acting to increase the population-mean trait value
increases the rate of coalescence for alleles that increase the
trait and lowers the coalescence rate for alleles that de-
crease the trait. In contrast, stabilizing selection acting on
a trait for which the population mean is at the fitness opti-
mum does not have a systematic directional effect on the
coalescent rates.

Our target of estimation is the population-average poly-
genic score for a trait going backward through time. By poly-
genic score, we mean a weighted sum of an individual’s
genotypes, where the weights are the additive effect sizes
of each allele. In our case, we are interested in the popula-
tion-average polygenic score, so we take a weighted sum of
the allele frequencies:

k
20 =2 Bpilt). o)
i=1

Here, Z(t) is the population-average polygenic score at
time t in the past; p;(t) is the population frequency of
one of the two alleles at locus i at time t in the past, and
B; is the additive effect size of the allele whose frequency is
pi(t), where the effect sizes have been scaled so that the
other allele has an effect size of zero. (In practice, effect
sizes will be estimated with error, but in this article we
treat the effect sizes as known.) The 2 arises because of
diploidy.

If the k loci included in the calculation of Z(t) include all
the causal loci, then changes in Z(t) (the population-average
polygenic score) reflect changes in the population-average
phenotypic value in the absence of changes in the distribu-
tion of environmental effects on the trait, changes in the
effect size, epistasis, and gene-by-environment interaction.
Even if these strong assumptions are not met, rapid changes
in Z(t) could provide evidence that natural selection has
acted on the trait.
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Figure 1 Selection distorts the coalescent tree at a locus. (A) The frequency
time course for an allele that has been favored by recent selection is shown
in gray. Superimposed is a coalescent tree relating a sample of chromo-
somes; the top half are of the disfavored type, and the bottom half are of
the favored type. Because the favored alleles trace to a pool of ancestors that
was small before selection, there is an excess of recent coalescence on the
subtree of the favored allele. (B) If a polygenic trait is under directional
selection, the rate of coalescence depends on effect size. The time under
selection is shown on the horizontal axis, and the vertical axis shows the ratio
of lineages remaining compared with the neutral expectation. Different lines
show different effect sizes in units of trait standard deviation. Results are an
average across 1000 simulations; selection coefficients are determined as if
the trait experiences 1% directional truncation selection. Sel., selection.

Our strategy for estimating Z(t) is to estimate the historical
allele-frequency time courses, p;(t), for the loci associated
with a trait. Given an estimator of the allele-frequency time
courses, p;i(t), we estimate polygenic scores as

k
200 = 2y_Bipio) @

If the loci contributing to the polygenic score are independent,
then the variance of the polygenic-score estimator is

Var[Z =4 Z BZVar 3)

We present three methods for estimating historical allele-
frequency time courses. A number of authors have investigated

estimating allele-frequency time courses from coalescent ge-
nealogies (Slatkin 2001; Coop and Griffiths 2004; Chen and
Slatkin 2013) or by applying Wright-Fisher diffusion theory to
time-series data (Bollback et al. 2008; Schraiber et al. 2016).
Our approaches are cruder than some of these but have the
advantage of being fast enough to be applicable to thousands
of GWAS loci.

Estimating the allele-frequency time course at a
single locus

We present several methods for estimating the historical
allele-frequency time course at a specific biallelic locus given
a coalescent tree at the locus (Figure 2). (Our procedures
could be generalized to loci with multiple alleles.) In each
case, the goal is to estimate the frequency of an allele of
interest (e.g., the effect allele) at locus i at time t in the past,

or p;(t).

Proportion-of-lineages estimator: The simplest way to esti-
mate a historical allele frequency is to treat the lineages
ancestral to the sample at time t as representative of the pop-
ulation at time t. If the locus has evolved neutrally between the
present and time t in the past, then the lineages ancestral to the
sample at time t are a random sample—with respect to allelic
type—from the population at time t. If the lineages ancestral to
the sample are a random sample from the population at time ¢,
then a reasonable estimator of p;(t) is the proportion of line-
ages at time t that carry the allele of interest,

pi(t) = T”i(t)’ @

where r;(t) is the total number of lineages ancestral to the
present-day sample at locus i at time t and j;(t) is the number
of lineages at time ¢ that carry the allele of interest. Assuming
that the mutation distinguishing the alleles has only
appeared once in the history of the sample, the lineages that
carry the derived allele are those ancestral to contemporary
copies of the derived allele, which must coalesce to one line-
age before coalescing with the rest of the tree. If the tree for
the locus is known, then the branch on which the mutation
must have appeared is known, but the exact time of the mu-
tation is not. In practice, we assume that the mutation oc-
curred in the middle of the branch connecting the derived
subtree to the rest of the tree. (We make this assumption
when implementing all estimators.)

If the population size at time t is large compared with the
number of ancestral lineages at time t, then conditional
on ri(t), the number of ancestral lineages carrying the al-
lele of interest, ji(t), is distributed approximately as a
binomial[r;(t), p;(t)] random variable. Thus, Equation 4 is
the maximum-likelihood estimator of p;(t) and, conditional
on r;(t), its sampling variance can be estimated as (dropping
the subscript i’s and parenthetical t's for compactness)

i1-)

Var(p) = rf :](rr_g])‘ (5)
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Figure 2 Schematics of three estimators of historical allele frequencies
using coalescent trees. In each tree, we show the information used to
estimate allele frequency in the population at a time represented by the
horizontal dashed line. (A) The proportion-of-lineages estimator. The
estimate of the derived-allele frequency in the population is the de-
rived-allele frequency among the ancestors of the sample, or 2/5 in
the picture. (B) The waiting-time estimator. Relative “sizes” of the sub-
populations of ancestral-allele and derived-allele carriers are estimated
as a function of intercoalescence times among the ancestors of the
present-day ancestral- and derived-allele carriers. (C) The lineages-
remaining estimator. The relative sizes of the subpopulations of ances-
tral-allele and derived-allele carriers are estimated by examining the
number of coalescence events that occur between prespecified time
points, here called tp and t;.

In Appendix B, we give a Bayesian interpretation of the
proportion-of-lineages estimator that relies on connections
between neutral diffusion and the ancestral process (Tavaré
1984).

If chromosomes carrying the two alleles have differed in
fitness between the present and time t, then Equation 4 will
in general be a biased and inconsistent estimator of p;(t).
Chromosomes carrying alleles that have been favored by
selection will be more likely to leave offspring in the pre-
sent-day population than will chromosomes carrying unfa-
vored alleles. Favored alleles will thus be overrepresented
among the lineages ancestral to the sample compared with
their actual frequency at time t. However, even if Equation 4
is an inconsistent estimator of the population’s allele fre-
quency, it retains the interpretation of being the allele fre-
quency among lineages ancestral to the sample. Thus, when
Equation 2 is applied to allele frequencies estimated by
Equation 4, the result is the mean polygenic score among
chromosomes ancestral to the present-day sample at some
time in the past.

Waiting-time estimator: The proportion-of-lineages esti-
mator proposed in Equation 4 works well under neutrality,
but under selection it tends to underestimate the degree
of allele-frequency change experienced by selected al-
leles. One potential solution is to consider the chromo-
somes in the population as two separate subpopulations
(Hudson and Kaplan 1988)—one for the carriers of each
of the two alleles at the locus—and to estimate the sizes of
those two populations over time. At locus i, denote the
sizes of these two subpopulations at time t as N;(t) (for
the allele of interest) and M;(t) (for the other allele). The
frequency of the allele of interest at time t in the past, or

pi(t), is
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N;(t)

pi(t) = Ni(©) + M0 (6)

Here, we propose to estimate N;(t) and M;(t) on the basis of
properties of the coalescent trees for the two alleles. We then

estimate by plugging these estimates, N;(t) and M;(t), into
Equation 6, giving

pilt) = _ NG %
N;(t) + M;(t)

The estimator in Equation 7 is not unbiased in general,
even if the estimates of N;(t) and M;(t) are unbiased. But
separating the problems of estimating the two subpopula-
tions confers an advantage: this estimator does not as-
sume, as the proportion-of-lineages estimator does, that
the two allelic types have had equal fitness between t
and the present.

Assuming that the mutation that distinguished the two
alleles occurred only once in the history of the sample, the
chromosomes carrying the two alleles can be treated as two
distinct subsamples between the time of the mutation and
the present. Among the ancestors of the allele subsample
carrying the allele of interest, coalescent time 7 accrues
according to

) = /0 1/N;(z)dz,

where t is measured in generations. It follows that

dr;(t)
dt

= 1/Ni(t),

suggesting that N;(t) can be estimated by assessing the rate at
which coalescent time accrues. M;(t) can then be estimated
analogously and p;(t) can be estimated by Equation 7. We
present two related approaches to estimating the rate of
accrual of coalescent time in each subsample: one approach
in which estimates are made with respect to waiting times
between coalescent events, and another in which estimates
are made with respect to the number of lineages ancestral to
the subsample at a specified time in the past. In both ap-
proaches, we assume that N;(t) and M;(t) are piecewise con-
stant, but it is possible to modify these estimators under
other assumptions about how N;(t) and M;(t) change be-
tween time points.

The number of coalescence events in a time interval de-
pends on the amount of coalescent time passed. Our ap-
proaches amount to inverting this relationship to estimate
the amount of coalescent time passed on each lineage (and
thus their relative population sizes) in a method-of-moments
framework. In this subsection, we assess N;(t) and M;(t)
according to the time passed between fixed numbers of
coalescent events.

Suppose that N;(t) = N, assumed to be constant from a
time point of interest (defined here to be t =0) until ¢



coalescences have occurred within the subsample, which
at t = 0 consists of n; lineages. Define Y, as the waiting
time to the kth coalescence, starting from the k — 1th co-
alescence event (or from t = 0 if k = 1). Define the total
waiting time from t=0 to the ¢th coalescence as
Y = ZLIY;{. Then, in units of generations, each Yj is an
independent, exponentially distributed random variable
with rate (n; —k + 1)(n; — k)/(2N). Thus,

¢ & 2N
Z: —k+1 i—k) D w—-1)

w=n;—(+1 w

:m(l—l> ®
nj—¢ n;

and

4N? i . ©)

Var(Y) =
) 7(/+1WZ(W_1)2

w=n;

For large n; and intermediate values of ¢, Y is approxi-
mately normally distributed with expectation and vari-
ance given by Equation 8 and Equation 9 (Chen and
Chen 2013). One estimator of N;(t) = N, which is both a
method-of-moments estimator and the maximum-likelihood
estimator under the asymptotically normal distribution of
Y, is

I\T\ - Y
O = S —0-1/m]

With ¢ =1, this is the “skyline” estimator of Pybus et al.
(2000), and with ¢=1, it is the generalized skyline estima-
tor of Strimmer and Pybus (2001). It is unbiased under the
assumption of constant N;(t) between coalescence events.
In our implementation, after the tree has coalesced down
to one lineage, we assume that N;(t) remains constant into
the past if its allele is ancestral and that N;(t) remains con-
stant before dropping to zero in the middle of the branch
on which the mutation arose if its allele is derived. (In
principle, derived vs. ancestral status may be determined
by the tree topology or “forced” on the basis of prior knowl-
edge if the tree topology may be in error. We use the tree
topology.)
One may estimate p;(t) by

(10)

PT(\t) = %,
Ni(t) + M;(t)

(1D

where M;(t) is estimated analogously to N;(t). In principle,
the estimates of N;(t) and M;(t) may be based on waiting
times for different numbers of coalescences (¢),and they
will likely be constant for different intervals of time. By
a first-order Taylor approximation argument described in
Appendix C,

E[pi(t)] = pi(0),

but in practice, p/ii?) can be substantially biased. Its approx-
imate variance is given in Appendix C.

One important decision in using this estimator is the
choice of ¢—i.e., the number of coalescence events to wait
for—for each allele. Small values of ¢ lead to variable
estimates. On the other hand, the estimator assumes that
the size of the subpopulation is constant until ¢ coales-
cent events have occurred, which may be increasingly
unrealistic for large ¢. In this article, we use ¢ =1 and
defer investigation of different choices of ¢ for future
work.

Lineages-remaining estimator: The next estimator, which
we term the “lineages-remaining” estimator, operates
on a principle similar to the waiting-time estimator. The
coalescent time passed on each allele’s background is
evaluated by looking at the local rate of coalescence, and
the relative numbers of carriers of each allele are estimated
to form an allele-frequency estimate. The difference is
that whereas the waiting-time estimator estimates popula-
tion sizes for each allele between coalescent events, the
lineages-remaining estimator estimates the population
sizes between prespecified times by comparing the num-
ber of lineages of each type that remain (i.e., have not
coalesced) at the more ancient end of a time interval
with the number present at the more recent end of the
interval.

Suppose that N;(t) = N during an interval of At genera-
tions At the end of the interval closer to the present there
are n hneages and at the end of the interval further into
the past there are n hneages The expected number of
lineages remaining at the end of the interval can be ap-
proximated as

L : (12)

where 7 is the amount of coalescent-scaled time elapsed
during the interval (Griffiths 1984; Maruvka et al. 2011;
Chen and Chen 2013; Jewett and Rosenberg 2014).
Here, N;(t) is a haploid population size, so 7 = At/Ni(tg.
For large ”5 and intermediate lengths of time, nit)
is approximately normally distributed (Griffiths 1984;
Chen and Chen 2013). An estimator for N;(t) = N, which
is both a method-of-moments estimator—one based
on the approximate value of E[nl@]—and the maximum-
likelihood estimator under the limiting normal distribu-
tion, is

— At

Ni(t) = © © :
D

As the tree coalesces to few lineages, there are several edge
cases in which the estimator is undefined. Our methods for
handling these cases are discussed in Appendix C.

(13)
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It may be impractical to estimate N;(t) because At in gen-
erations may be unknown. However, At cancels in the esti-
mator of the allele frequency p;(t),

normality fails over longer timescales, in part because al-
lele frequencies are bounded by 0 and 1.) Here, f is the
coalescent time that has passed between time points and p;

(14

where M;(t) is the number of carriers of the reference allele in
the population at locus i at time t, and m;(0) and m;(t) are the
numbers of lineages carrying the reference allele at the ends
of the time interval closer to and more distant from the pre-
sent, respectively. Approximate expressions for the variance
of the estimator in Equation 14 are in Appendix C.

In practice, the estimator in Equation 14 will be evaluated
at a set of times. Here, we evaluate the estimator every 0.001
coalescent units, starting at the present and extending back
four coalescent units. The grid of times at which changes in
the number of lineages of each type are considered will in-
fluence the estimate. Finer grids will lead to estimates that
are more variable but less biased by the assumption of con-
stant N;(t) and M;(t) between time points.

Testing time courses for selection

Once a polygenic-score time course has been constructed, it
can be tested for selection. Whereas the relevance for trait
evolution of the estimators proposed in the previous sections
depends on the proportion of trait variance accounted for by
the polygenic score, polygenic-score time courses can be
tested for selection even if they account for a small proportion
of the trait variance. Further, although we apply the test in this
section to estimated polygenic-score time courses, it is also
applicable to measured time-series data on allele frequencies
when available.

We propose a test for selection that amounts to a modifi-
cation of the Qx framework of Berg and Coop (2014), an
analog of Qsr—Fsr tests for phenotypic selection (Whitlock
2008). Berg and Coop proposed Qyx to test for overdispersion
of polygenic scores among population samples, relative to
neutral expectations. Here, we check for overdispersion
among a set of time points along one population branch.
We denote our time-based modification of Qx as Tx.

Suppose that for each time t; in a sequence of times,
we observe a population-level polygenic score, Z(tj) =
ZZfZIBipi(tj), as in Equation 1. Assume that changes across
time at distinct loci are independent. Following the Qx frame-
work, we model polygenic scores using a multivariate normal
distribution. Specifically, we posit that at each locus, over
short timescales, allele-frequency changes between time
points follow a normal[0, fp;(1 — p;)] distribution (Cavalli-
Sforza et al. 1964; Nicholson et al. 2002). (Approximate
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is the allele frequency at locus i at one end of the interval.
(In practice, we choose p; to be the allele frequency at the
end of the interval closer to the present.) The parameter f
is constant across loci.

If allele-frequency changes at each locus are independent
and normally distributed, then changes between time points
in the polygenic scores are normal with expectation 0 and
variance f4Zf:1Bi2pi(1 —pi). The variance of polygenic-
score changes can also be written as f2V4, where
Va = 22?:1,31-2@-(1 —pi) is the additive genetic variance of
the trait.

Imagine we have a time course of polygenic scores
Z(to),Z(t1),Z(t2), ..., Z(tw), with to<t; < ... <t,. Under
neutrality, for each time pointj € 1, ..., w, the statistic

_ Z(G) — Z(t-1)

er =
A\ /ZVA(l’j — tj—l)

has a normal(0, 1) distribution. (V4 can be recomputed for
each value of j using allele frequencies at t;;. In practice, we
use the same Vy—the one computed from allele-frequency
estimates closest to the present—for each time interval.)
Moreover, under neutrality, allele-frequency changes in dis-
tinct time intervals are independent, so values of X; are in-
dependent for distinct j. Thus, the sum across time points

(15)

(16)

has a y?(w) distribution. [For details on the equivalence of
the Tx statistic in Equation 16 to the Qy statistic of Berg and
Coop (2014) in this scenario, see Appendix D.] In contrast,
under directional selection, changes in allele frequency
across time depend on the effect size of the locus, leading
to large changes in the polygenic score and Tx values larger
than predicted by the y?(w) distribution. This test is an ana-
log of time-course tests for phenotypic selection based on
neutral Brownian motion (Lande 1976; Turelli et al. 1988),
but with the advantage that we know Vj,.

Tx can be compared with a y?(w) distribution to test
for significance, or it can be compared with a distribution
obtained by permuting either effect sizes or their signs. If
the y?(w) distribution is used, then coalescent times elapsed



between polygenic scores can be estimated by assessing esti-
mated allele-frequency changes between time points, either
at putatively neutral loci or trait-associated loci. Using esti-
mated times produces type-I error rates closer to the nomi-
nal value because the estimators we use tend to change
at a systematically different rate than the actual allele
frequencies: the proportion-of-lineages estimator changes
more slowly than do population allele frequencies, and the
other estimators change more quickly than population al-
lele frequencies. In practice, we use the sample variance of
A(P)/[p(1 —p)] as an estimate of coalescent time passed
between time points, where A(p) is an estimated allele-
frequency change at a variable locus and p is the estimated
allele frequency at the more recent end of the time inter-
val. Assessing elapsed time on the basis of trait-associated
loci may lead to a power decrement, but it will not be
large—most of the Tx signal comes from coordination of
small shifts across loci and not from larger-than-expected
allele-frequency changes (Berg and Coop 2014).

Data availability

Supplemental material, including code for the article, available
at Figshare: https://doi.org/10.25386/genetics.6955367. Ad-
ditionally, code used for running the simulations and im-
plementing all data analyses presented here is available at
http://github.com/mdedge/rhps coalescent. The version of
the code used here is permanently archived at doi: 10.5281/
zenodo.1461077.

Simulation Results

We examined the performance of our methods in coalescent
simulations. In particular, we simulated coalescent trees for
unlinked loci associated with a phenotype. The simulated loci
evolve neutrally or under directional selection. In particular, if
an allele at locus i has effect size B; on a trait, and the trait
experiences a selection gradient «(t) at time t, then the se-
lection coefficient on the allele—representing the fitness
of the heterozygote minus the fitness of the ancestral
homozygote—is s(t) = a(t)B; (Charlesworth and Charles-
worth 2010, equation B3.7.7). The coalescent simulations
were run in mssel (Berg and Coop 2015), a version of ms
(Hudson 2002) that takes allele-frequency time courses that
may be produced by selection, and assumed a constant pop-
ulation size. Effect sizes for the derived allele are drawn from
a normal distribution centered at zero. For details on the
simulations, see Appendix E.

We consider the performance of the methods when (1) the
true trees are provided as input, and (2) when the trees must
be reconstructed from sequence data. We use the software
RENT+ (Mirzaei and Wu 2016) for tree reconstruction.

Before considering systematic results over many simula-
tions, we present estimated time courses for one representa-
tive simulation (Figure 3). In the simulation shown, the trait
was under selection upward in the past but has evolved neu-
trally recently.

1.0

— true ,
0.5 | —— proportion—of-lineages A A
0.0 4 — lineagesremaining |~ T

| I I I I I
-0.08 -0.06 -004 -0.02 0.00

Population—average polygenic score

Time (coalescent units, past to left)

Figure 3 The behavior of two of the proposed estimators, the propor-
tion-of-lineages estimator and the lineages-remaining estimator, in a sin-
gle simulation. The true time course of the population-average polygenic
score is shown in black. The trait is under selection upward from 0.04 to
0.02 coalescent units in the past, leading to a shift of approximately two
standard deviations in present-day units. Between the present and the
most recent period of selection, the proportion-of-lineages estimator per-
forms well. During the period of selection (and before), the ancestors of
the sample are no longer representative of the ancestral population and
the estimator becomes biased. In contrast, the lineages-remaining esti-
mator is variable at all times but is less affected by bias associated with the
period of selection. (For readability, results for the waiting-time estimator
are not shown, but they are similar to the lineages-remaining estimator.)
The estimates shown are formed from simulated coalescent trees for a
sample of 200 chromosomes.

The proportion-of-lineages estimator (Equation 4) esti-
mates allele frequencies as the proportion of lineages ances-
tral to the sample carrying each allele. It is expected to
perform well under neutrality, and it does here: in the neu-
tral period between the offset of selection and the present,
it tracks the true polygenic score closely. During the period
of selection, looking backward in time, the proportion-of-
lineages estimator strays off target, slowly recovering in the
period before the onset of selection. Looking forward in time,
it is as if the proportion-of-lineages estimator “anticipates”
shifts due to selection. As mentioned in the Proportion-of-
lineages estimator subsection, the apparent anticipation oc-
curs because, if there has been selection between the present
and time t in the past, then the ancestors of the present-day
sample at time ¢ are a biased sample from the population at
time t. For example, if the trait has been selected upward,
then the ancestors of a present-day sample will have had high
trait values compared with their peers.

The waiting-time estimator (Equation 11) and the line-
ages-remaining estimator (Equation 14) do not rely on an
explicit neutrality assumption. Instead, they track the relative
passage of coalescent time—measured, roughly, in terms of
coalescence events—for each allelic type. These estimators
track the rapid change in the polygenic score during the pe-
riod of selection much more closely than the proportion-of-
lineages estimator. (Only the lineages-remaining estimator is
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shown in Figure 3.) At the same time, these estimators rely on
a highly stochastic signal—in the case of the waiting-time
estimator (with ¢ = 1), single coalescence events—and they
are noisier than the proportion-of-lineages estimator as a
result.

The patterns seen in Figure 3 reflect the performance of
the methods over many simulations, as detailed in the next
subsections.

Estimator performance: bias and mean squared error

Figure 4 shows bias and mean squared error (MSE) of our
estimators of the historical polygenic score across three sce-
narios: one in which the trait has evolved neutrally, one in
which there has been recent directional selection on the trait,
and a third in which there has been directional selection on
the trait in the past but the trait has recently evolved neu-
trally. These estimators are also compared with a “straight-
line” estimator: a straight line that goes from the present value
to the ancestral state (i.e., all derived-allele frequencies zero) in
two coalescent units. In the neutral case, none of the estimators
show marked bias and the proportion-of-lineages estimator has
the lowest variance (and thus lowest MSE). Estimators formed
from trees reconstructed by RENT+ (dashed lines) rather than
the true trees (solid lines) are noisier and they do not outper-
form the straight-line estimator under neutrality.
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In the presence of selection, the proportion-of-lineages
estimator is badly biased, and the severity of the bias increases
during the interval of selection (looking backward in time).
The waiting-time and lineages-remaining estimators are less
strongly biased in the presence of selection and they achieve
similar MSEs under selection and neutrality. Again, estimators
formed from RENT+ trees perform worse than estimators
formed from the true trees, but in the presence of selection,
they outperform the straight-line estimator.

Interval estimation: coverage probabilities

Figure 5 shows the coverage probabilities of nominal 95%
confidence intervals formed on the basis of the proportion-
of-lineages, waiting-time, and lineages-remaining estimators
and their (approximate) variances.

Under neutrality, and when using the true trees, all con-
fidence intervals have approximately the correct coverage,
although coverage for confidence intervals for both the line-
ages-remaining and waiting-time estimators decays further
into the past. The decay of the coverage probability far in the
past makes sense for the lineages-remaining and waiting-time
estimators: both of these estimators implicitly assume that
the number of carriers of each allele in the population re-
mains constant between coalescent events. This assumption
may be a reasonable approximation in the recent past, when



>
1]

1

.0 o
7 WMMM =
o =
s 09 =z
[} w
= e
;’ 0.8 g
o ©
g 0.7- — proportion-of-lineages §
3 —— waiting time 8
8 — :
0.6 I Ilr:eages rlemalnlnglg : | 0.6 I : I : : I
-0.25 -020 -0.15 -0.10 -0.05 0.00 -025 -020 -0.15 -0.10 -0.05 0.00
Time (coalescent units, past to lef) Time Figure 5 Conf|depce-|ntewa| coverage for nominal
95% confidence intervals based on the proposed
D estimators. All confidence intervals were formed as-
= 10 AR . suming an approximately normal distribgtion for the
a2 R it 1 i estimator, adding *=1.96 SE to the estimate. Stan-
£ 09 o | =z 09 ‘
g N | u dard errors were computed by taking the square
E o8 4 . < 08 root of the approximate variance of each estimator.
% \ & Coverage probabilities are based on (A, C, and E)
g 07 \\ g o7 1000 simulations for true trees or (B, D, and F)
3 \\ o Y 100 simulations for RENT+ trees. Simulations were
%8 T T T T | he 7 T T | conducted under either (A and B) neutrality, (C and
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 -025 -020 -0.15 -0.10 -0.05 0.00 D) a shift of approx|mate|y two standard deviations
Time Time over the last 0.02 coalescent units, or (E and F) a
shift of two standard deviations from 0.04 to 0.02
E F coalescent units ago.
1.0 o e 1.0
Rl e erebee o e v S
£ o9 o \ E 0.9
2 & 4
= 08 \, ‘ o 0.8
(0] b ¥ (=]
o \ ©
o A @ i
g 07 N g o7
IS \ 2
0.6 \ | 0.6
I T T T T 1 I T T T T 1
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 -025 -020 -0.15 -0.10 -0.05 0.00
Time Time

coalescent events are frequent, but become untenable in the
distant past, when coalescence times are longer.

Confidence intervals computed on the basis of RENT+
trees only achieve the nominal coverage in the very recent
past and become anticonservative further back in time. This
behavior is expected; the variances we use incorporate sto-
chasticity in the coalescent process but do not account for
randomness arising from errors in tree estimation. [Stochas-
ticity in the coalescent process has been called “coalescent
error” and contrasted with randomness from errors in tree
estimation, or “phylogenetic error” (Ho and Shapiro 2011)].

Under selection, confidence intervals from the proportion-
of-lineages estimator have very low coverage—this arises
from the bias documented in Figure 4. The coverage proba-
bilities of the waiting-time and lineages-remaining estima-
tors are less changed by selection.

Power of Ty

We assessed the performance of the T statistic (Equation 16)
as a test statistic for detecting selection in the simulations
shown in Figure 4 and Figure 5. We constructed the test
statistic from the allele-frequency estimates produced by
each of the proposed estimators and compared it against both
the theoretical y? distribution and against a permutation dis-
tribution. Table 1 shows the results. Under neutrality (first

two rows), comparing Ty against a distribution formed by
randomly permuting the effect sizes produces acceptable
type-I error rates. (There are 100 simulations using RENT +
and the values in Table 1 do not differ significantly from
0.05.) When the theoretical x? distribution is used, RENT+
type-I error rates are unacceptably high, but the type-I error
rates produced from the true trees are acceptable.

Of the methods with acceptable type-I error, tests using the
allele frequencies estimated by the proportion-of-lineages
estimator have by far the highest power. It may seem para-
doxical that the proportion-of-lineages estimator is the
best of our estimators at detecting selection, given that
the estimated time courses produced by the proportion-of-
lineages estimator are biased in the presence of selection.
However, in our simulations, the proportion-of-lineages es-
timator generally moves in the correct direction in the pres-
ence of selection, albeit more slowly than it should. In
contrast, the other two allele-frequency estimators are
highly variable, leading to wide null distributions and de-
creased power. The proportion-of-lineages estimator can
also be thought of as the mean polygenic score among
lineages ancestral to the sample, and the test for selection
responds to changes in the mean polygenic score of the
ancestors that are faster than would be expected under the
null hypothesis of neutral evolution.
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Table 1 Power/type-l error of various implementations of the Ty statistic

Proportion-of-lineages estimator

Waiting-time estimator Lineages-remaining estimator

Permutation

Permutation Permutation

Input x? distribution distribution  x? distribution distribution  y? distribution  distribution
Neutral True trees 0.053 0.054 0.030 0.060 0.061 0.064
RENT+ 0.17 0.08 0.31 0.04 0.11 0.09
Selection, 0.02 coalescent True trees 1 1 0.033 0.060 0.194 0.222
units ago—now
RENT+ — 0.87 — 0.05 — 0.15
Selection, 0.04-0.02 True trees 0.969 0.954 0.035 0.065 0.058 0.084
coalescent units ago
RENT+ — 0.37 — 0.08 — 0.02

Power/type-I error (at the 0.05 level) of various implementations of the Ty statistic in the simulations shown in Figure 4 and Figure 5, with 200 chromosomes sampled in the present.
Power is not shown for methods with type-I error rates = 0.1. Tx was computed using allele-frequency estimates 0,0.01,0.02, ..., 0.1 coalescent units before the present.

With the proportion-of-lineages estimator, using true trees
unsurprisingly gives better power than RENT+ trees, but
RENT + trees still have substantial power.

In Table 1, power is higher when selection occurs closer to
the present. To explore the relationship between the timing
of selection and present-day sample size, we conducted ad-
ditional simulations. In these simulations, we assessed the
power of the Ty test (using the proportion-of-lineages allele-
frequency estimates from true trees, and comparing with
a permutation distribution) to detect an approximate one-
standard-deviation shift in the population-mean polygenic
score. We varied the timing of the shift and the present-day
sample size. Figure 6 shows the results. For detecting selec-
tion close to the present, power increases with sample size.
However, for selection further in the past, power reduces to
the type-I error rate, regardless of the present-day sample
size. This is because power to detect selection depends on
unusual coalescent times during the period of selection, and
by 0.1 coalescent units in the past, most coalescent events
have already occurred, even in large samples. For example,
even extremely large present-day samples have, in expecta-
tion, ~ 200.5 ancestors tracing back 0.01 coalescent units in
the past and ~ 20.5 ancestors 0.1 coalescent units in the past
(Maruvka et al. 2011; Jewett and Rosenberg 2014). Thus, it
will likely be impossible to detect all but the strongest selec-
tive events by their signatures in coalescent trees if they are
over 0.1 coalescent units in the past. Tx’s power to detect
selection up to ~ 0.02 — 0.04 coalescent units into the past
represents an extension of the SDS statistic (figure S6 in Field
etal. 2016), which has excellent power in the very recent past
but very little power beyond the expected length of a terminal
branch [2/n in coalescent units, where n is the present-day
sample size (Fu and Li 1993)]. In Appendix F, we show em-
pirical power for a test statistic analogous to SDS computed
from the lengths of the terminal branches (Figure F1). This
SDS analog has similar power to Tx near the present, but its
power decays more rapidly for selection further in the past.

Simulations with larger numbers of loci

All of the above simulations are of polygenic scores that
incorporate 100 loci each. Reassuringly, the performance is
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extremely similar for all estimators and tests if the number of
loci is increased, using the estimators based on the true trees.
In Supplemental Material, Figure S1, Figure S2, and Table S1,
we show results analogous to Figure 4, Figure 5, and Table 1
with 1000 loci per polygenic score.

Empirical Application: Human Height

We applied our proposed estimators to human polygenic
scores for height. Genetic variation within Europe related
to human height has been studied by many investigators
interested in polygenic selection (Turchin et al. 2012; Berg
and Coop 2014; Robinson et al. 2015; Field et al. 2016; Berg
etal. 2017; Racimo et al. 2018; Uricchio et al. 2018). A recent
pair of articles compared the results produced by existing
tests for polygenic selection when applied to human height
using GWAS effect sizes from two different studies (Berg et al.
2018; Sohail et al. 2018). Most previous work has used
GWAS effect sizes from the Genetic Investigation of Anthro-
pometric Traits (GIANT) consortium (Wood et al. 2014),
whereas the new work uses GWAS effect sizes from the larger
and presumably less structured UK Biobank sample (Sudlow
et al. 2015). Tests for polygenic selection on height provide
much less evidence for selection when UK Biobank effect
sizes are used than when effect sizes from GIANT are used.
One possible explanation is that GIANT effect sizes are con-
taminated by some degree of population stratification.

In Figure 7, we show estimated population-mean polygenic-
score time courses among populations ancestral to the
GBR (British in England and Scotland) subsample of the
1000 Genomes Project (1000 Genomes Project Consortium
et al. 2012). In the top panel GIANT effect sizes are used,
and in the bottom panel UK Biobank effect sizes are used.
Polygenic scores were constructed by taking the top locus
in each of ~ 1700 approximately independent genetic re-
gions. [These polygenic scores are identical to those used in
Berg et al. (2018); our “UK Biobank” is their “UKB-GB.”]
Coalescent trees for these loci were estimated in RENT +.
(Details in Appendix G.)

When the time courses are constructed using GIANT, all
three estimators suggest that the population-mean polygenic
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proportion-of-lineages estimator on the true trees and using a null distri-
bution obtained by randomly permuting locus effect sizes.

score for height has increased in the recent past. Using the
proportion-of-lineages approach, an increase of approximately
three present-day polygenic-score standard deviations is es-
timated. In contrast, time courses estimated using the UK
Biobank effect sizes show little apparent change in the recent
past: the proportion-of-lineages estimator suggests a recent
decrease of ~0.34 standard deviations.

Further, when the change from the present to the most
recent time point (0.001 units in RENT+) is assessed by the
Tx test, both sets of effect sizes yield some evidence of selec-
tion, but the evidence is stronger with GIANT effect sizes
than with UK Biobank effect sizes. Specifically, with GIANT,
Tx(1) = 14.9, P = 0.0005 from 10,000 permutations, and
with UK Biobank, Tx(1) = 7.0, P = 0.0112. [We do not claim
that the difference between the Ty values across the data sets
is itself significant (Gelman and Stern 2006), merely that the
pattern of weakened evidence in the UK Biobank matches
that observed by recent work (Berg et al. 2018; Sohail et al.
2018).] However, using both data sets, the evidence for se-
lection is limited to periods very close to the present. If the
same set of times evaluated in the simulations is evaluated for
the height polygenic scores (approximate coalescent times
0,0.01,0.02,...,0.1 before the present), neither polygenic-
score time course provides evidence for selection (P = 0.2
in both cases). GIANT effect sizes produced much lower
P-values for recent selection on height in the UK in a recent
article (Field et al. 2016), but that work used a sample of
3195 genomes, whereas the GBR subset of the 1000 Genomes
sample contains only 91 genomes.

Thus, our estimators broadly recapitulate the pattern of
other methods for detecting polygenic selection, finding ev-
idence suggestive of selection when GIANT effect sizes are
used but much weaker evidence when UK Biobank effect sizes
are used.

GIANT
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Figure 7 Estimated population-mean polygenic scores for height in the
population ancestral to the GBR subset of the 1000 Genomes Project
(91 genomes). Time is displayed in approximate coalescent units, defined
such that the mean across loci of the time (measured in mutations) to the
most recent common ancestor is 2. To construct the polygenic scores, the
top locus in each of ~ 1700 approximately unlinked genomic regions was
chosen. (See Appendix G for more information.) The top panel shows the
results when effect sizes estimated by GIANT are used; the bottom panel
shows analogous results when UK Biobank effect-size estimates are used.
In both panels, the effect sizes are scaled so that the standard deviation of
the polygenic score is 1 in the present, assuming linkage equilibrium
among SNPs. 1000G, 1000 Genomes.

Discussion

We have proposed a set of estimators and tests for population-
mean polygenic scores over time, given (additive) effect sizes
for a trait at independent trait-associated loci and coalescent
trees for the trait-associated loci. Estimation of the population-
mean polygenic-score time course is most effective when the
trait (and its associated loci) evolves neutrally and the ances-
tors of the sample are representative of the ancestral popu-
lation. When the trait has been under selection, estimation is
still possible, but the estimates obtained are noisier. Tests for
polygenic selection that are based on coalescent trees have the
potential to be powerful in the recent past.

In terms of practical applications, we have produced one
estimator that produces good estimates of population-mean
polygenic-score time courses under neutrality and that is
also well powered to detect departures from neutrality (the
proportion-of-lineages estimator). The other two estimators
are less biased by selection, but they are variable and less
useful for detecting selection. At this writing, one sensible
procedure for fitting these methods to data would be to form
initial estimates using the proportion-of-lineages estimator
and test them for selection using the Ty statistic. If the test
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suggests selection, then the ancestors of the sample may not
be representative of the ancient population and polygenic-
score time courses from the proportion-of-lineages estimator
may be biased. In that case, the waiting-time or lineages-
remaining estimators might be applied.

These methods add to a set of methods that use GWAS
information to study the history of complex traits (Berg and
Coop 2014; Field et al. 2016; Berg et al. 2017; Racimo et al.
2018; Uricchio et al. 2018). Many of these methods have
been applied to human height, and our methods produce
similar conclusions when applied to the same data (Berg
et al. 2018; Racimo et al. 2018; Sohail et al. 2018; Uricchio
etal. 2018). Our methods add to previous work by estimating
the historical time courses of mean polygenic scores and by
leveraging ARGs.

As with other population-genetic methods for studying
polygenic traits, results from our methods are accompanied
by many qualifiers to interpretation (Novembre and Barton
2018).

In general, estimates arising from the methods presented
here should not be viewed as necessarily reflecting the his-
torical time course of trait values within a population. In our
simulations, the association between genotype and phenotype
was assumed to remain constant over time. In contrast, poly-
genic scores estimated in practice are better thought of as
functions that encode present-day associations between ge-
notype and phenotype. The genotype—phenotype association
captured by a polygenic score may be due to causal effects of
the included genotypes, but it might also be due to linkage
disequilibrium between tag SNPs and ungenotyped causal
SNPs, to indirect genetic effects (Kong et al. 2018; Walsh
and Lynch 2018, Chap. 22), or to environmental effects that
covary with genotype for other reasons. Any of these sources
of association between genotype and phenotype might
change as the environment and genetic background of the
population change over time, causing time courses estimated
by our method to deviate from the history of average trait
values in the population. For example, the genetic architec-
ture may change across the time period over which estimates
are made, for example because of changes in linkage disequi-
librium between tag loci and causal loci (Martin et al. 2017),
or because loci that explained trait variation in the past have
since fixed or been lost. Further, real-world estimates of effect
size will be subject to noise in estimation and possibly bias
due to stratification. [Even small amounts of stratification
can seriously mislead tests for selection (Berg et al. 2018;
Sohail et al. 2018).] Particularly in case-control studies, as-
certainment biases may also lead to confounding between
the evolutionary status of an allele (i.e., derived or ancestral
status) and power to detect trait associations (Chan et al.
2014). Also, importantly, changes in the environment may
drive changes in mean levels of the trait that either amplify
or oppose changes in population-mean polygenic scores, ei-
ther via their direct effects or via gene—environment interac-
tions. Finally, for most human traits, current polygenic scores
explain relatively small proportions of the trait variance. In
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addition to all the issues above that might lead to bias in an
inferred time course, using a weakly predictive polygenic
score adds measurement error to the inferred time course—
much of the variance in the trait will not be reflected by the
polygenic score. This added variance would not be expected
to increase the type-I error rate of tests of neutrality, but it will
make the inferred time courses less likely to reflect the history
of the trait closely.

Beyond these general caveats, the methods we propose
here have several limitations that suggest directions for future
work. The first three limitations concern outstanding statis-
tical issues. First, the polygenic scores we estimate here are
weighted sums of effect sizes estimated under additive mod-
els. Our variance estimates also assume that the loci incorpo-
rated in the polygenic score are in linkage equilibrium.
Because our estimators work by estimating historical allele
frequencies at the loci contributing to the polygenic score, they
can in principle be adapted to estimate any function of allele
frequencies, including trait predictions that account for dom-
inance, epistasis, and linkage among loci, and also to single-
locus trajectories. However, the strategies we use here for
variance estimation and hypothesis testing may need to be
modified for more general functions of allele frequencies.
Second, any applications of these methods to real data will
entail noise that is not accounted for by the variance estimates
we propose. In particular, effect sizes will be estimated with
error and so will the coalescent trees for sites included in the
polygenic score. It will be important to incorporate these
sources of variance in future estimates of sampling variation.
Third, as suggested in the Theory section, the waiting-time and
lineages-remaining estimators implicitly contain smoothing
parameters. Fully characterizing the effects of these smooth-
ing parameters and of alternative smoothing strategies—
such as those used to smooth coalescent-based estimates of
population-size history (Drummond et al. 2005; Minin et al.
2008)—will reveal the potential of these estimators, which
have high variance in the forms in which they are used here.

The next three possible extensions are suggested by bi-
ological applications and by the coalescent framework in
which we work. First, the theory we develop here is for a
single population, but our setting within a coalescent frame-
work suggests the possibility for extension to multiple pop-
ulations, perhaps by developing multivariate analogs of our
statistics within a coalescent-with-migration framework
(Kaplan et al. 1991). Similarly, whereas we work with poly-
genic scores for a single trait, our methods can be extended to
consider polygenic scores for multiple, correlated traits. In a
similar vein, Berg et al. (2017) have recently extended the Qx
statistic to multiple correlated traits, drawing inspiration
from the framework of Lande and Arnold (1983). Working
with multiple traits will allow us to distinguish hypotheses in
which a trait is directly subject to selection from hypotheses
in which a correlated trait is the target of selection. Finally,
because the coalescent framework explicitly represents the
evolution of the sample backward in time, it will be produc-
tive to incorporate ancient samples.



The methods we propose are promising in part because
they capitalize on illuminating descriptions of genetic varia-
tion that will become increasingly widely available. ARGs
encode all the coalescence and recombination eventsreflected
in the present-day sample, and thus are richly informative
about the history of the sample’s ancestors. Statistics com-
puted from these ARGs have the potential to capture all the
information about an allele’s frequency time course that is
available in a present-day sample. Approaches to traits that
are based on sample ARGs will improve with the develop-
ment of our understanding of the architecture of complex
traits and of our ability to reconstruct ARGs.

Acknowledgments

We thank members of the Coop laboratory and Arbel Harpak
for useful discussions, Jeremy Berg for providing the height
loci and effect sizes used in Berg et al. (2018), and Sajad
Mirzaei for support with RENT+ software. Joshua Schraiber
and Jay Taylor provided helpful comments on the manu-
script. The authors acknowledge support from National In-
stitutes of Health (RO1 GM-108779) and National Science
Foundation (1262327 and 1353380).

Literature Cited

1000 Genomes Project ConsortiumAbecasis, G. R., A. Auton, L. D.
Brooks, M. DePristo et al., 2012 An integrated map of genetic
variation from 1,092 human genomes. Nature 491: 56-65.
https://doi.org/10.1038/nature11632

Barton, N. H., 1986 The maintenance of polygenic variation through
a balance between mutation and stabilizing selection. Genet. Res.
47: 209-216. https://doi.org/10.1017/50016672300023156

Bell, M. A., M. P. Travis, and D. M. Blouw, 2006 Inferring natural
selection in a fossil threespine stickleback. Paleobiology 32:
562-577. https://doi.org/10.1666/05026.1

Berg, J. J., and G. Coop, 2014 A population genetic signal of poly-
genic adaptation. PLoS Genet. 10: e1004412. https://doi.org/
10.1371/journal.pgen.1004412

Berg, J. J., and G. Coop, 2015 A coalescent model for a sweep of a
unique standing variant. Genetics 201: 707-725. https://doi.
org/10.1534/genetics.115.178962

Berg, J. J., X. Zhang, and G. Coop, 2017 Polygenic adaptation has
impacted multiple anthropometric traits. bioRxiv 167551. DOI:
https://doi.org/10.1101/167551.

Berg, J. J., A. Harpak, N. Sinnott-Armstrong, A. M. Joergensen, H.
Mostafavi et al., 2018 Reduced signal for polygenic adaptation
of height in uk biobank. bioRxiv 354951. DOI: https://doi.org/
10.1101/354951.

Berisa, T., and J. K. Pickrell, 2016 Approximately independent
linkage disequilibrium blocks in human populations. Bioinfor-
matics 32: 283-285.

Bollback, J. P., T. L. York, and R. Nielsen, 2008 Estimation of 2N,s
from temporal allele frequency data. Genetics 179: 497-502.
https://doi.org/10.1534/genetics.107.085019

Biirger, R., 2000 The Mathematical Theory of Selection, Recombina-
tion, and Mutation (Wiley Series in Mathematical & Computa-
tional Biology). Wiley, New York.

Cavalli-Sforza, L. L., I. Barrai, and A. W. F. Edwards, 1964 Analysis
of human evolution under random genetic drift. Cold Spring
Harb. Symp. Quant. Biol. 29: 9-20. https://doi.org/10.1101/
SQB.1964.029.01.006

Chan, Y., E. T. Lim, N. Sandholm, S. R. Wang, A. J. McKnight et al.,
2014 An excess of risk-increasing low-frequency variants can be
a signal of polygenic inheritance in complex diseases. Am. J. Hum.
Genet. 94: 437-452. https://doi.org/10.1016/j.ajhg.2014.02.006

Charlesworth, B., and D. Charlesworth, 2010 Elements of Evolu-
tionary Genetics, Vol. 42. Roberts and Company Publishers,
Greenwood Village, CO.

Chen, H., and K. Chen, 2013 Asymptotic distributions of coales-
cence times and ancestral lineage numbers for populations with
temporally varying size. Genetics 194: 721-736. https://doi.
org/10.1534/genetics.113.151522

Chen, H., and M. Slatkin, 2013 Inferring selection intensity and
allele age from multilocus haplotype structure. G3 (Bethesda) 3:
1429-1442. https://doi.org/10.1534/g3.113.006197

Cook, L. M., G. S. Mani, and M. E. Varley, 1986 Postindustrial
melanism in the peppered moth. Science 231: 611-613. https://
doi.org/10.1126/science.231.4738.611

Coop, G., and R. C. Griffiths, 2004 Ancestral inference on gene
trees under selection. Theor. Popul. Biol. 66: 219-232. https://
doi.org/10.1016/j.tpb.2004.06.006

Crawford, N. G., D. E. Kelly, M. E. B. Hansen, M. H. Beltrame, S. Fan
et al., 2017 Loci associated with skin pigmentation identified
in African populations. Science 358: eaan8433. https://doi.org/
10.1126/science.aan8433

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks et al.,
2011 The variant call format and vcftools. Bioinformatics 27:
2156-2158. https://doi.org/10.1093/bioinformatics/btr330

Drummond, A. J., A. Rambaut, B. Shapiro, and O. G. Pybus,
2005 Bayesian coalescent inference of past population dynam-
ics from molecular sequences. Mol. Biol. Evol. 22: 1185-1192.
https://doi.org/10.1093/molbev/msil03

Ewens, W. J., 2004 Mathematical Population Genetics I. Theoreti-
cal Introduction, Ed. 2. Springer-Verlag, New York. https://doi.
org/10.1007/978-0-387-21822-9

Fay, J. C., and C.-I. Wu, 2000 Hitchhiking under positive Darwin-
ian selection. Genetics 155: 1405-1413.

Field, Y., E. A. Boyle, N. Telis, Z. Gao, K. J. Gaulton et al,
2016 Detection of human adaptation during the past
2000 years. Science 354: 760-764. https://doi.org/10.1126/
science.aag0776

Fu, Y.-X., and W.-H. Li, 1993 Statistical tests of neutrality of mu-
tations. Genetics 133: 693-709.

Garud, N. R., P. W. Messer, E. O. Buzbas, and D. A. Petrov,
2015 Recent selective sweeps in north american Drosophila
melanogaster show signatures of soft sweeps. PLoS Genet. 11:
€1005004. https://doi.org/10.1371/journal.pgen.1005004

Gelman, A., and H. Stern, 2006 The difference between “signifi-
cant” and “not significant” is not itself statistically significant. Am.
Stat. 60: 328-331. https://doi.org/10.1198/000313006X152649

Gingerich, P. D., 1983 Rates of evolution: effects of time and tem-
poral scaling. Science 222: 159-161. https://doi.org/10.1126/
science.222.4620.159

Grant, P. R, and B. R. Grant, 2002 Unpredictable evolution in a
30-year study of Darwin’s finches. Science 296: 707-711.
https://doi.org/10.1126/science.1070315

Griffiths, R. C., 1984 Asymptotic line-of-descent distributions.
J. Math. Biol. 21: 67-75. https://doi.org/10.1007/BF00275223

Griffiths, R. C., and P. Marjoram, 1997 An ancestral recombina-
tion graph, pp. 257-270 in Progress in Population Genetics and
Human Evolution. Springer, New York.

Ho, S. Y. W,, and B. Shapiro, 2011 Skyline-plot methods for esti-
mating demographic history from nucleotide sequences. Mol.
Ecol. Resour. 11: 423-434. https://doi.org/10.1111/j.1755-
0998.2011.02988.x

Hudson, R. R., 2002 Generating samples under a wright—fisher
neutral model of genetic variation. Bioinformatics 18: 337-338.
https://doi.org/10.1093/bioinformatics/18.2.337

Polygenic-Score Time Courses 247


https://doi.org/10.1038/nature11632
https://doi.org/10.1017/S0016672300023156
https://doi.org/10.1666/05026.1
https://doi.org/10.1371/journal.pgen.1004412
https://doi.org/10.1371/journal.pgen.1004412
https://doi.org/10.1534/genetics.115.178962
https://doi.org/10.1534/genetics.115.178962
https://doi.org/10.1534/genetics.107.085019
https://doi.org/10.1101/SQB.1964.029.01.006
https://doi.org/10.1101/SQB.1964.029.01.006
https://doi.org/10.1016/j.ajhg.2014.02.006
https://doi.org/10.1534/genetics.113.151522
https://doi.org/10.1534/genetics.113.151522
https://doi.org/10.1534/g3.113.006197
https://doi.org/10.1126/science.231.4738.611
https://doi.org/10.1126/science.231.4738.611
https://doi.org/10.1016/j.tpb.2004.06.006
https://doi.org/10.1016/j.tpb.2004.06.006
https://doi.org/10.1126/science.aan8433
https://doi.org/10.1126/science.aan8433
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/molbev/msi103
https://doi.org/10.1007/978-0-387-21822-9
https://doi.org/10.1007/978-0-387-21822-9
https://doi.org/10.1126/science.aag0776
https://doi.org/10.1126/science.aag0776
https://doi.org/10.1371/journal.pgen.1005004
https://doi.org/10.1198/000313006X152649
https://doi.org/10.1126/science.222.4620.159
https://doi.org/10.1126/science.222.4620.159
https://doi.org/10.1126/science.1070315
https://doi.org/10.1007/BF00275223
https://doi.org/10.1111/j.1755-0998.2011.02988.x
https://doi.org/10.1111/j.1755-0998.2011.02988.x
https://doi.org/10.1093/bioinformatics/18.2.337

Hudson, R. R., and N. L. Kaplan, 1988 The coalescent process in
models with selection and recombination. Genetics 120: 831-840.

Jewett, E. M., and N. A. Rosenberg, 2014 Theory and applications
of a deterministic approximation to the coalescent model. Theor.
Popul. Biol. 93: 14-29. https://doi.org/10.1016/j.tpb.2013.12.007

Kaplan, N., R. R. Hudson, and M. lizuka, 1991 The coalescent
process in models with selection, recombination and geographic
subdivision. Genet. Res. 57: 83-91. https://doi.org/10.1017/
S0016672300029074

Kaplan, N. L., T. Darden, and R. R. Hudson, 1988 The coalescent
process in models with selection. Genetics 120: 819-829.

Keinan, A., and A. G. Clark, 2012 Recent explosive human pop-
ulation growth has resulted in an excess of rare genetic variants.
Science 336: 740-743. https://doi.org/10.1126/science.1217283

Kong, A., G. Thorleifsson, M. L. Frigge, B. J. Vilhjalmsson, A. I. Young
etal, 2018 The nature of nurture: effects of parental genotypes.
Science 359: 424-428. https://doi.org/10.1126/science.aan6877

Lande, R., 1976 Natural selection and random genetic drift in
phenotypic evolution. Evolution 30: 314-334. https://doi.org/
10.1111/j.1558-5646.1976.tb00911.x

Lande, R., and S. J. Arnold, 1983 The measurement of selection
on correlated characters. Evolution 37: 1210-1226. https://doi.
org/10.1111/j.1558-5646.1983.tb00236.x

Lee, K. M,, and G. Coop, 2017 Distinguishing among modes of
convergent adaptation using population genomic data. Genetics
207: 1591-1619.

Li, H., 2011 Tabix: fast retrieval of sequence features from generic
tab-delimited files. Bioinformatics 27: 718-719. https://doi.
org/10.1093/bioinformatics/btq671

Ludwig, A., M. Pruvost, M. Reissmann, N. Benecke, G. A. Brock-
mann et al., 2009 Coat color variation at the beginning of
horse domestication. Science 324: 485. https://doi.org/10.1126/
science.1172750

MacFadden, B. J., 2005 Fossil horses—evidence for evolution. Sci-
ence 307: 1728-1730. https://doi.org/10.1126/science.1105458

Martin, A. R., C. R. Gignoux, R. K. Walters, G. L. Wojcik, B. M.
Neale et al., 2017 Human demographic history impacts genet-
ic risk prediction across diverse populations. Am. J. Hum. Genet.
100: 635-649. https://doi.org/10.1016/j.ajhg.2017.03.004

Maruvka, Y. E., N. M. Shnerb, Y. Bar-Yam, and J. Wakeley,
2011 Recovering population parameters from a single gene
genealogy: an unbiased estimator of the growth rate. Mol. Biol.
Evol. 28: 1617-1631. https://doi.org/10.1093/molbev/msq331

Mathieson, I., I. Lazaridis, N. Rohland, S. Mallick, N. Patterson et al.,
2015 Genome-wide patterns of selection in 230 ancient eurasians.
Nature 528: 499-503. https://doi.org/10.1038/nature16152

Minin, V. N., E. W. Bloomgquist, and M. A. Suchard, 2008 Smooth
skyride through a rough skyline: bayesian coalescent-based in-
ference of population dynamics. Mol. Biol. Evol. 25: 1459-1471.
https://doi.org/10.1093/molbev/msn090

Mirzaei, S., and Y. Wu, 2016 Rent+: an improved method for
inferring local genealogical trees from haplotypes with recom-
bination. Bioinformatics 33: 1021-1030.

Neale Lab, 2017 Rapid gwas of thousands of phenotypes for
337,000 samples in the uk biobank. Available at: http://www.
nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-
phenotypes-for-337000-samples-in-the-uk-biobank. Accessed:
November 13, 2018.

Nicholson, G., A. V. Smith, F. Jénsson, O. Gustafsson, K. Stefdnsson
et al., 2002 Assessing population differentiation and isolation
from single-nucleotide polymorphism data. J. R. Stat. Soc. B 64:
695-715. https://doi.org/10.1111/1467-9868.00357

Novembre, J., and N. H. Barton, 2018 Tread lightly interpreting
polygenic tests of selection. Genetics 208: 1351-1355. https://
doi.org/10.1534/genetics.118.300786

Palacios, J. A., J. Wakeley, and S. Ramachandran, 2015 Bayesian non-
parametric inference of population size changes from sequential

248 M. D. Edge and G. Coop

genealogies. Genetics 201: 281-304. https://doi.org/10.1534/
genetics.115.177980

Palamara, P. F., J. Terhorst, Y. S. Song, and A. L. Price, 2018 High-
throughput inference of pairwise coalescence times identifies sig-
nals of selection and enriched disease heritability. Nat. Genet. 50:
1311-1317. https://doi.org/10.1038/s41588-018-0177-x

Paradis, E., J. Claude, and K. Strimmer, 2004 APE: analyses of
phylogenetics and evolution in R language. Bioinformatics 20:
289-290. https://doi.org/10.1093/bioinformatics/btg412

Przeworski, M., G. Coop, and J. D. Wall, 2005 The signature of
positive selection on standing genetic variation. Evolution 59:
2312-2323. https://doi.org/10.1554/05-273.1

Pybus, O. G., A. Rambaut, and P. H. Harvey, 2000 An integrated
framework for the inference of viral population history from
reconstructed genealogies. Genetics 155: 1429-1437.

Racimo, F., J. J. Berg, and J. K. Pickrell, 2018 Detecting polygenic
adaptation in admixture graphs. Genetics 208: 1565-1584.
https://doi.org/10.1534/genetics.117.300489

Rasmussen, M. D., M. J. Hubisz, I. Gronau, and A. Siepel,
2014 Genome-wide inference of ancestral recombination
graphs. PLoS Genet. 10: €1004342. https://doi.org/10.1371/
journal.pgen.1004342

R Core Team, 2013 R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

Robinson, M. R., G. Hemani, C. Medina-Gomez, M. Mezzavilla, T.
Esko et al., 2015 Population genetic differentiation of height
and body mass index across europe. Nat. Genet. 47: 1357-1362.
https://doi.org/10.1038/ng.3401

Ronen, R., N. Udpa, E. Halperin, and V. Bafna, 2013 Learning
natural selection from the site frequency spectrum. Genetics
195: 181-193. https://doi.org/10.1534/genetics.113.152587

Sabeti, P. C., D. E. Reich, J. M. Higgins, H. Z. P. Levine, D. J. Richter
et al., 2002 Detecting recent positive selection in the human
genome from haplotype structure. Nature 419: 832-837. https://
doi.org/10.1038/nature01140

Schraiber, J. G., S. N. Evans, and M. Slatkin, 2016 Bayesian infer-
ence of natural selection from allele frequency time series. Genet-
ics 203: 493-511. https://doi.org/10.1534/genetics.116.187278

Simons, Y. B., K. Bullaughey, R. R. Hudson, and G. Sella, 2018 A
population genetic interpretation of gwas findings for human
quantitative traits. PLoS Biol. 16: €2002985. https://doi.org/
10.1371/journal.pbio.2002985

Slatkin, M., 2001 Simulating genealogies of selected alleles in a
population of variable size. Genet. Res. 78: 49-57. https://doi.
org/10.1017/S0016672301005183

Smith, J. M., and J. Haigh, 1974 The hitch-hiking effect of a fa-
vourable gene. Genet. Res. 23: 23-35. https://doi.org/10.1017/
S0016672300014634

Sohail, M., R. M. Maier, A. Ganna, A. Bloemendal, A. R. Martin
et al., 2018 Signals of polygenic adaptation on height have
been overestimated due to uncorrected population structure in
genome-wide association studies. bioRxiv 355057. DOI: https://
doi.org/10.1101/355057.

Strimmer, K., and O. G. Pybus, 2001 Exploring the demographic
history of dna sequences using the generalized skyline plot. Mol.
Biol. Evol. 18: 2298-2305. https://doi.org/10.1093/oxfordjour-
nals.molbev.a003776

Stuart, A., and J. K. Ord, 1987 Kendall’s Advanced Theory of Statis-
tics, Distribution Theory, Vol. I. Oxford University Press, London.

Stulp, G., and L. Barrett, 2016 Evolutionary perspectives on hu-
man height variation. Biol. Rev. Camb. Philos. Soc. 91: 206-234.
https://doi.org/10.1111/brv.12165

Sudlow, C., J. Gallacher, N. Allen, V. Beral, P. Burton et al.,
2015 Uk biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle and
old age. PLoS Med. 12: €1001779. https://doi.org/10.1371/
journal.pmed.1001779


https://doi.org/10.1016/j.tpb.2013.12.007
https://doi.org/10.1017/S0016672300029074
https://doi.org/10.1017/S0016672300029074
https://doi.org/10.1126/science.1217283
https://doi.org/10.1126/science.aan6877
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1111/j.1558-5646.1983.tb00236.x
https://doi.org/10.1111/j.1558-5646.1983.tb00236.x
https://doi.org/10.1093/bioinformatics/btq671
https://doi.org/10.1093/bioinformatics/btq671
https://doi.org/10.1126/science.1172750
https://doi.org/10.1126/science.1172750
https://doi.org/10.1126/science.1105458
https://doi.org/10.1016/j.ajhg.2017.03.004
https://doi.org/10.1093/molbev/msq331
https://doi.org/10.1038/nature16152
https://doi.org/10.1093/molbev/msn090
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
https://doi.org/10.1111/1467-9868.00357
https://doi.org/10.1534/genetics.118.300786
https://doi.org/10.1534/genetics.118.300786
https://doi.org/10.1534/genetics.115.177980
https://doi.org/10.1534/genetics.115.177980
https://doi.org/10.1038/s41588-018-0177-x
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1554/05-273.1
https://doi.org/10.1534/genetics.117.300489
https://doi.org/10.1371/journal.pgen.1004342
https://doi.org/10.1371/journal.pgen.1004342
https://doi.org/10.1038/ng.3401
https://doi.org/10.1534/genetics.113.152587
https://doi.org/10.1038/nature01140
https://doi.org/10.1038/nature01140
https://doi.org/10.1534/genetics.116.187278
https://doi.org/10.1371/journal.pbio.2002985
https://doi.org/10.1371/journal.pbio.2002985
https://doi.org/10.1017/S0016672301005183
https://doi.org/10.1017/S0016672301005183
https://doi.org/10.1017/S0016672300014634
https://doi.org/10.1017/S0016672300014634
https://doi.org/10.1093/oxfordjournals.molbev.a003776
https://doi.org/10.1093/oxfordjournals.molbev.a003776
https://doi.org/10.1111/brv.12165
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779

Tajima, F., 1989 Statistical method for testing the neutral muta-
tion hypothesis by dna polymorphism. Genetics 123: 585-595.

Tavaré, S., 1984 Line-of-descent and genealogical processes, and
their applications in population genetics models. Theor. Popul. Biol.
26: 119-164. https://doi.org/10.1016,/0040-5809(84)90027-3

Turchin, M., C. W. K. Chiang, C. D. Palmer, S. Sankararaman, D.
Reich et al., 2012 Evidence of widespread selection on stand-
ing variation in europe at height-associated SNPs. Nat. Genet.
44: 1015-1019. https://doi.org/10.1038/ng.2368

Turelli, M., J. H. Gillespie, and R. Lande, 1988 Rate tests for
selection on quantitative characters during macroevolution
and microevolution. Evolution 42: 1085-1089. https://doi.
org/10.1111/j.1558-5646.1988.tb02526.x

Uricchio, L. H., H. C. Kitano, A. Gusev, and N. A. Zaitlen, 2018 An
evolutionary compass for elucidating selection mechanisms
shaping complex traits. bioRxiv 173815. DOI: https://doi.org/
10.1101/173815.

Voight, B. F., S. Kudaravalli, X. Wen, and J. K. Pritchard, 2006 A map of
recent positive selection in the human genome. PLoS Biol. 4: e72
[erratum: PLoS Biol. 4: e154; corrigenda: PLoS Biol. 5: €147 (2007)].

Walsh, B., and M. Lynch, 2018 Evolution and Selection of Quanti-
tative Traits. Oxford University Press, Oxford. https://doi.org/
10.1093/0s0/9780198830870.001.0001

Watterson, G., 1975 On the number of segregating sites in genet-
ical models without recombination. Theor. Popul. Biol. 7: 256—
276. https://doi.org/10.1016/0040-5809(75)90020-9

Whitlock, M. C., 2008 Evolutionary inference from Qgr. Mol. Ecol. 17:
1885-1896. https://doi.org/10.1111/j.1365-294X.2008.03712.x

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers et al,
2014 Defining the role of common variation in the genomic
and biological architecture of adult human height. Nat. Genet.
46: 1173-1186. https://doi.org/10.1038/ng.3097

Communicating editor: R. Nielsen

Polygenic-Score Time Courses 249


https://doi.org/10.1016/0040-5809(84)90027-3
https://doi.org/10.1038/ng.2368
https://doi.org/10.1111/j.1558-5646.1988.tb02526.x
https://doi.org/10.1111/j.1558-5646.1988.tb02526.x
https://doi.org/10.1093/oso/9780198830870.001.0001
https://doi.org/10.1093/oso/9780198830870.001.0001
https://doi.org/10.1016/0040-5809(75)90020-9
https://doi.org/10.1111/j.1365-294X.2008.03712.x
https://doi.org/10.1038/ng.3097

Appendix A: The Relationship Between Coalescent Rates and Phenotypic Selection

In this appendix, we describe the consequences of directional and stabilizing selection on a trait for coalescence rates at loci
associated with the trait.

We begin by considering the general effects of selection on coalescence before considering the specific cases of directional and
stabilizing selection. If the frequency of the allele of interest at locus i at time t is p;(t) in a population of 2N chromosomes, then

the probability of any one of (g) pairs coalescing in the preceding generation is

1
0= (3) e

(Hudson and Kaplan 1988). Writing the frequency in the preceding generation as p;(t — 1) = p;(t) — A;(t), then

1 1
At—1) = (g) W0~ A0)] (g) m[l + A(t)/pi(t)] (A2)

assuming that A;(t) is small so that higher-order terms in the Taylor ex%)ansmn can be ignored. We can decompose
the change in frequency from the preceding generation into A;(t (t +A , the contributions of random
genetic drift (N) and selection (S), respectively. Then, taking the expectatlon over the frequency in the preceding
generation,

B (e—1)] ~ (Z) m{l +EN()/pi(0)])

- (5) g 1+ 40 /o]

(A3)

because E[A<N>( t)] =0 and A, S>( t) is the deterministic change due to selection.

If the allele of interest affects a trait that is under selection, then the form of A<S (t) depends on the allele’s role in the trait’s architecture
and on the specifics of selection on the trait. The simplest case is one in Whl(‘h directional selection acts on a phenotype whose genetic
architecture is purely additive. Denote the selection gradient—that is, the slope of fitness regressed on phenotype—as «. If the effect
size of the ith locus on the phenotype is 8;, and the loci that affect the phenotype are unlinked, then

A9 (1) = aBpi(1 - p1) (A4)

(equation 3.17 in Charlesworth and Charlesworth 2010). Therefore, the expected coalescent rate over the possible allele-
frequency changes in the preceding generation is

Balh(e =101~ (5 ) gy 1+ i1 il )

Therefore, recent directional selection increases the coalescence rate among alleles that move the phenotype in the direction in
which selection acts. For example, if larger trait values have been selected recently, the coalescence rate will be higher among
alleles associated with larger values of the trait and lower among alleles associated with smaller values of the trait. This is true
regardless of the frequency of the allele.

If the phenotype is subject to both directional selection and stabilizing selection, the allele frequency matters. For example,
one common and reasonably general model incorporating directional and stabilizing selection is the quadratic optimum model,
where the fitness of an individual with phenotype G is W(G) = 1 — s(Po—G)?. There is directional selection on the phenotype
when the population mean (G) deviates from the optimum & = Po — G # 0. (When & > 0, the population mean is below the
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optimum, and selection will favor larger trait values.) Under this model,

AS)(¢) = 25B:pi(1 — pi) +sB2pi(1—pi)(2p; — 1); (A6)

Directional selection Stabilizing selection

see Barton (1986), Biirger (2000), and Simons et al. (2018) for a recent discussion. Note the similarity of the directional
selection term—with the selection gradient now controlled by sé—to Equation 20, resulting in similar coalescent rates to
Equation 21. The A term for stabilizing selection matches that of a disruptive-selection model with an unstable equilibrium at
1/2- 5/

Incorporating both directional and stabilizing selection, the expected coalescent rate is approximately

Ba(e- D~ () gy |1+ 2800 ) 81— p)(2— ). )

Directional selection Stabilizing selection

The stabilizing selection term decreases the coalescent rate of whichever allele has frequency <1/2. The average coalescent
rate among “up” alleles (B8; > 0) depends on the value of Ex[A(t — 1)] averaged over the frequency distribution of p;. Thus,
when directional selection acts on the phenotype, we again expect an increased coalescence rate among alleles whose
effects have been favored. If the population is at the optimum, i.e., § = 0, then averaging across loci there is no net effect on
the coalescent rates if there is a symmetric distribution of p; ~1/2 (across all effect sizes). This symmetric distribution will
result when the population is at equilibrium and there is no mutational bias (i.e., there is no difference in the mutational
input of up and down alleles).

Appendix B: A Bayesian View of the Proportion-of-Lineages Estimator

To arrive at a Bayesian view of the estimator proposed in Equation 4, define the frequency of an allele of interest at a
biallelic locus at time ¢ in the past as p;(t) = x. If the allele of interest is equally likely to be derived or ancestral, a
reasonable prior distribution would be proportional to the limit (as the mutation rates approach 0) of the stationary
distribution of the neutral diffusion with mutation, or x ! (1 —X)71 (equation 5.70 in Ewens 2004). Assume that the two
alleles at the locus have experienced equal reproductive success between the present and time t—that is, assume
that the locus has evolved neutrally in the time interval. In that case, the lineages ancestral to a random sample
of chromosomes in the present are themselves a random sample from the population at time t, and if there are r
ancestral lineages at time t, then the number carrying the allele of interest is a binomial(r,x) random variable. If we
observe that j out of r ancestral lineages at time t carry the allele of interest, then the posterior distribution for x is
proportional to

fx(ﬂhi)“%— (5)

Noticing that x/ ’1(1—x)r_j ~! is the kernel of a B(j,r — j) distribution gives the posterior,

(r—1)!
(=D —j-1)

felx|r,j) = I (1—x) 7L (B1)

Equation B1 suggests the posterior mean of p;(t) as an estimate of the frequency (when r=2 and j = 1), which is equal to
Equation 4. The posterior variance is

TP (O BN () R I (Ul )
var[pl(t)|pl(0) _p7ni _Jami =r ]i| _rz(r+1)7 (Bz)
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which differs from the binomial sampling variance in Equation 5 by a factor of r/(r + 1).

It may be interesting to note that there is a connection between this Bayesian view of the estimator and the neutral Wright-Fisher
diffusion process, reviewed by Tavaré (1984). Under a neutral Wright-Fisher diffusion model without mutation, the probability that
an allele frequency changes forward in time from p;(t) = p to p;(0) = x in time ¢t can be written as (equation 7.18 in Tavaré 1984)

Plp0) =xlpi) =l = 3w 3§ )ppr (7 )t (83)

r=2 j=1 J

here g,(t) is the probability that r lineages of an initially infinite number of lineages survive to time t. Because the neutral
diffusion is time reversible (Ewens 2004),

P[p;(0) = x|pi(t) = p] = Plpi(t) = x|p;(0) = p],

and the expression on the right side of Equation B3 is thus also an expression for the allele frequency in the past given the allele
frequency in the present, P[p;(t) = x|p;(0) = p] One way to interpret Equation B3 is that if r lineages survive to time ¢, then the
number j of lineages carrying a focal allele at time t is a binomial(r, p) random variable. Then, conditional on j, the frequency
pi(t) has a B(j,r —j) distribution.

Appendix C: Mathematical Details for the Waiting-Time and Lineages-Remaining Estimators

Taylor-Series Expansions for Expectations and Variances of Ratios

Both the waiting-time and lineages-remaining estimators take the form

| =

p=fN,D) ==, (C1)

)

where D = N + M, and N and M are population-size estimators that are independent of each other. We assume that P(D < 0) = 0.
Equation C1 is equivalent to Equation 7 from the main text, with the subscripts and time notation removed for compactness.

In this subsection we present general Taylor-series approximations for the expectation and variance of the estimator in
Equation C1 in terms of the expectation and variance of N and M. Similar presentations are available in other references
(sections 10.5-10.6 in Stuart and Ord 1987), but we present the argument here for completeness.

The first-order Taylor expansion of Equation C1 evaluated at (ug, 1p) is

F(N,D) = f(pgs mp) +F () (N = pag) + £ (mp) (D = pap) + Z, (C2)

where f];] and flf) are the partial derivatives of f, and Z represents the contribution of higher-order terms. The expectation of
f(N,D) is therefore
ELF(N, D)) = E| f(ag 1) + fy (1) (N = pug) + £ (1) (D — ) + 2|
= fig mp) + f (g ) EN = ) + F5 (1p)E(D — p) + E(2),

with the second step coming from the linearity of expectation and the fact that f (uy, up ) is not random. Choosing uy and uj, to
be equal to the expectations of N and D gives

E[f(N.D)]

Fluaggs tp) + Fiy (k)0 + f5 ()0 + E(2)
fugs mp) + E(2) (C3)

i
flug, mp) ==,
1))

%
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where the approximation depends on the higher-order terms represented by Z being small. Equation C3 underlies the claim in
the main text that the waiting-time estimator is approximately, to first order, unbiased (under the unrealistic assumption that
the number of carriers of each allele is constant between coalescent events).

To obtain the approximate variance of the estimator in Equation C1, we use Equation C3 and note that

Var[f(N, D)) = E({f(N,D)~E[ f(N,D)]}") 4

Substituting the first-order Taylor expansion in Equation C2 for (N, D), ignoring the higher-order terms represented by Z, gives

Var[f(N,D)] ~ E{ [)C(MN#]}) + f () (N = pag) +f5(Mﬁ)(b—Mﬁ)—f(MN7M]j)r}

B [Fy 5) (=) + £ 1) D=15)] |

(C5)

B [fy () (V=) + 26 (g ) () (N = ) (D = ) + i 1) * (D= )
= Fi i) B[ (M=) + 26 (g ) (1 ELN = b )(D = pap)] + F (1) B | (D= )]
= i () 2Var(N) + 2, (g )f () Cov(N, D) + £ (1) *Var(D).

The last step comes from the definitions of variance and covariance and the fact that we choose uy and uy to be equal to the
expectations of N and D. In our case, f(N,D) = N/D, implying that fI%](;LN) =1/uy and fli)(;uﬁ) = _MN/M%. Plugging these
values into Equation C5 gives

Var(N) _ 2pgCov(N,D) N ,LLIZ(]Var(ﬁ)

Var[f(N,D)] ~ —; 5 — (C6)
IJ@ Mﬁ ’MD
with the useful alternative form
A 2 N N » >
varlf(N, D)] ~ (:“_N) Var(]z\l) _ 2Cov(N,D) N Var(é)) . 7
K5 My T Kp

Finally, in our setting, D = N + M, and N and M are independent conditional on the true but unknown allele-frequency time
course (Kaplan et al. 1988; Coop and Griffiths 2004). Conditional independence gives wp = ug+ wy,
Var(D) = Var(N) + Var(M), and Cov(N,D) = Var(N). Using these identities in Equation C7 gives

we gy ) (g )

) 2
Var@)z( e ) (C8)

Mgt B

Var(N) 2Var(N) N Var(N) + Var(l\A/[)} .

Approximate Variance of the Waiting-Time Estimator

As noted in the main text, the waiting-time estimator has the form

—

— _ Ni(®)
pi(t) oIS 0}
where
0 !
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Yis the waiting time associated with a set of ¢ coalescent events on the allele of interest’s background that envelop time ¢, and n;

is the number of allele-of-interest lineages that exist before any of the ¢ coalescent events have occurred. M;(t) is analogous,

substituting in a waiting time and number of lineages from the other allele’s background, and possibly a different value of ¢.
It is also noted in the main text (Equation 9) that the waiting time Y has variance

n; 1
Var(Y) = 4N;(t)? _.
e w? (w=1)%

w=n;

—

Thus, the variance of N;(t) is

Zni 1
— w=n; —(+1 WZ(W_l)Z

. AT ()2
Varlli()] = Ni(o T (©9)

If ¢ = 1, Equation C9 reduces to Var[]\f(?)]: N;(t)*. If ¢ < n;, then

& 1

2~ 2
w=n;—(+1 w2 (Wﬁ 1) niz(nif 1)

)

and Var(N(t)) ~ N(t)? /L. - -
By Equation C8 and the fact that N;(t) and M;(t) are unbiased, the approximate variance of the waiting-time estimator is

Var[p(t)] ~ -

—= Ni(t)? o2 20% %+ oy
T Ni(t) + Mi(0)? {Ni(t)z NONO) +M(0)] [N;(¢) + Mi(t)) } (C10)

where 0% and o3, are the variances of Nj(t) and M;(t), respectively. If ¢ = 1 is used to estimate both N;(t) and M;(t), then
Var|[N;(t)] = Ni(t)*, Var[M;(t)] = M;(t)*, and Equation C10 reduces to

— Ni(t)? Ni(t)* 2N; () Ni(t)* + My ()
Ni(t)? NiON:(0) + Mi(6)]  [Ny(e) + My (0))?

Ni(t)? 2N;(t) N;i(t)% + M(t)?
1 —
; Ni(t) + Mi(t)  [Ni(t) + M;(t))?

N {1 N M;(t)* — Ny(t)® — 2Ni(f)Mi(f)} (€1

= 2p;(t)*[1-p;(1)]*.

If N;(t) and M;(t) are estimated using the same value of ¢, and ¢ is much smaller than the starting number of lineages for both
loci, so that o3 ~ N;(t)?/¢ and 02, ~ M;(t)* /¢, then Equation C9 can be rewritten as

Var[p/i.(?)] ~ %Pi(t)z[l —pi(0))*.
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Approximate Variance of the Lineages-Remaining Estimator

In the main text, we propose to estimate N;(t) as

- At
Ni(t) = ‘ |
el o)

i

(C12)

where At is the number of generations elapsed between two ends of a predefined time interval, n;(0) is the number of lineages
of the allele of interest at the end of the time interval closer to the present, and n;(t) is the number of lineages of the allele of
interest at the end of the interval further into the past. The only random component of N;(t) is n;(t), which depends on the
number of coalescent events that occur during the interval. This estimator of Nj(t) is leads to an estimator for p;(t), the allele
frequency of interest,

m'® m©
_ log| 5| ~log | o
pi(t) =

(C13)

(t)

© © © 1°
log [mﬁrgl 1} ~log {mgﬁif 1} +log [nﬁ‘r;if 1} ~log {nﬁgl 1}

(The expression in Equation C13 is the same as in Ecngtion 14.)
To obtain an approximate sampling variance for p;(t), we use Equation C8, making the substitutions

A m!? m®
N =log L —log L
m® -1 m® -1

L 1

(® 0)
~ n. n.
M =log ! —log ! .

1 1

and

To use Equation C8, we need (at least approximate) expectations and variances for both these terms. To com-
pute an approximate expectation, we replace m" and n"’ with their expectations. Taking the case of n"’| notice that by
Equation 12,

+= (C14)
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In Equation C14, 7 represents the coalescent time passed on the allele of interest’s background, or At/N;(t), and so

Q) (0)
n; n; At
E lOg —— - log L ~ R (C15)
{ LE” - J [nl@ - 1} } 2N (1)
and analogously for ml@,
Q) (0)
m; m; At
E<log|—=—| —log L ~ . (C16)
{ [mEU - J {mgo) — 1} } 2M;(t)
(0)

Next we compute the approximate variances of these terms. Because n,

o0 o
Varg log|—+—| — log | —+—
nlY -1 nl® -1

1 1

is a constant,

0
= Var{ log ﬁ . (C17)
n’—1

By a first-order Taylor approximation, the variance is approximately

Var{log [%01] } ~ (f’{E[nit)]})zvar{ngf)}’ (C18)
nt _

1

where f ’{E[nl(.t>]} is the derivative of the right side of Equation C17 with respect to nl(t), evaluated at E[nl@] (The argument for
this approximation is entirely parallel to the one in Equation C5, but for a function of a single random variable.) The derivative
of the right side of Equation C17 with respect to nl@ , evaluated at E[nl@], is

FEl) ‘E[ngﬂ{]ﬁngfq Y €19

To write the approximate variance of nl@, we use the asymptotic variance derived by equation 5 in Griffiths (1984), using the
version for 8 =0 and o < « (see also Chen and Chen 2013). To change the expression into our notation, we make the
replacements o = nEO) At/[2N;(t)], B = —At/[2N;(t)] (because we assume only a single mutation distinguishing the two allelic
types, so 6 = 0 conditional on that mutation), and n = E[nff)]At/ [2N;(t)] (by Griffiths’ equation 4). Doing so and simplifying
yields

varl] = £ I}Z{Em R )

Plugging the expressions for f ’{E[nl@]} and Var[nft)] into Equation C18 gives an approximate variance,

(t)
n 1 1 1 1 At
Var{ log L ~ + - — . (c21)
{ [nl@ -1 } En?] E[R]-1 n® n%-1 N
Analogously, for the ml@ term,
(©)
m; 1 1 1 1 At
Var{ log L ~ + - - . (C22)
{ [mgt) - 1} } E[ml@} E[ml@} -1 ml@ mgo) -1 Mi(®)

—

Now, to obtain an approximate variance for p;(t), we plug the expressions in Equation C21, Equation C16, Equation C21, and
Equation C22 into Equation C8. Doing so gives the expression
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Var(p;(t)]

Noticing that p;(t) = N;(t)/[Ni(t) + M;(t)], expanding the products in the denominators and factoring out common terms

gives:

—

Var {pim

_4pi(0)*M(0)?

Finally, noticing that N;(t) = p;(t)[Ni(t) + M;(t)] and M;(t) = [1 — p:i(t)][Ni(t) + M;(t)] and defining the coalescent time passed

with respect to the whole sample, 7, = At[N;(t) + M;(t)], gives

A2 [1-pi(0)”

)

(C23)

To estimate the approximate variance in Equation C23, we replace p;(t) with its estimated value from the lineages-remainin,
estimator, 7; with the (known or estimated) coalescent time elapsed between time points, and the expectations of n§t) and mf

with their realized values.
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The approximate variance in Equation C23 relies on an asymptotic variance of the number of ancestral lineages from
Griffiths (1984). In practice, Equation C23 gives variance estimates that are much too large when the number of lineages are
small and the time passed is short. For example, with n(o) = (0> =10, p;(t) = 1/2, and 7; = 0.001, Equation C23 produces
~ 1.4.Because pi( ) € [0, 1], its maximum variance is O. 25 5. Opr stra/te\gy is to use the minimum of Equation C23 and the estimated
variance of the waiting-time estimator with ¢ = 1, or 2p;(t) [1—p;(t)]*> (Equation C11). The rationale is that 2p;(t)*[1—p;(t)]*
represents the variance obtained when one estimates pi(t) from only one coalescent event on each background—the lineages-
remaining estimator is always based on at least one coalescent event on each background.

Computing the Lineages-Remaining Estimator for Edge Cases

If no coalescences have occurred in the interval and nl@ = nl@, then the estimator in Equation 13 is undefined. In this case, we
compute the estimator for a larger value of At in which at least one coalescence event has occurred, extending At to the next
time on the predefined grid in which a coalescence has occurred. The estimator is also undefined if nl(t) = 1 because the
expected number of lineages remaining approaches but never reaches 1. In this case, we assume the coalescent time passed in
the interval is 2[1 — 1/n;(0)], which is the expected amount of time to coalesce from n;(0) lineages to one lineage. Finally, once
a subtree coalesces to one lineage, we assume that population size remains constant into the past for the ancestral allele and,
for the derived allele, that it remains constant before dropping to zero at in the middle of the branch connecting the derived
subtree to the rest of the tree. .

The approximate variance in Equation C23 is undefined if the estimated allele frequency p;(t) is equal to 0 or 1, in which
case we define the estimated variance of p;(t) to be 0. It is also undefined if only one lineage remains on either background
at the more recent end of the time interval [n;(0) = 1 or m;(0)=1]. If one lineage remains on one of the backgrounds, then
we estimate the variance as the variance of the waiting-time estimator with ¢ = 1. If only one lineage remains on each of the
two backgrounds, we define the estimated variance of p;(t) to be 1/12, which is the variance of a uniform(0, 1) random
variable.

Appendix D: The Correspondence of Tx and Qx

In this section, we explain the correspondence between the Ty statistic proposed in Equation 16 and the Qx statistic of
Berg and Coop (2014). If the population history is tree-like, then Qx can be thought of as checking for overdispersion
(relative to neutral expectations) of polygenic scores at the tips of the population tree. In contrast, Tx checks for
overdispersion at a set of time points along one branch of a population tree (i.e., a single population at different
times).

Briefly, Berg and Coop (2014) start with a vector Z Z whose elements are population-mean polygenic scores for a set of
populations minus an assumed value for the population-mean polygenic score in an ancestral population. Under neutrality, Z
follows a multivariate normal (MVN) (0, 2V,F) distribution, where V, is the additive genetic variance, and F is a matrix
reflecting the shared history of the populations. In particular, if the population history is tree-like, then entry F;; in the F matrix
reﬂects the branch length shared by populatlons i and j since | their descent from the ancestral population. If
Z ~ MVN(0, 2V4F), then the transformed vector X = (1/v/2V4)C C'Z’ (where C comes from the Cholesky decomposition
of F, such that F = CC") obeys an MVN(0, I) distribution. Thus, the sum of the squared entrles of the transformed vector X (the
quantity labeled Qx) obeys a y?(w) distribution under neutrality, where w is the length of X.

In the setting of this article, we have population-mean polygenic scores Z(ty), Z(t1), . . ., Z(tw) for the population ancestral to
one present-day population, assessed at various times. Each t; represents some amount of time before the present and
0=ty<t;<...<t,. In practice, we set t, = 0 and treat Z(0), the population-mean polygenic score in the present, as Berg
and Coop treated the ancestral polygenic score, so

Z=[Z(t) Z(t) ... Z(tw)]-Z(0).

In this setting, with the present-day population serving the role of “ancestor,” the shared branch length for two time points along
one branch of a population tree is their shared distance backward from the present day, which is to say the branch length from
the present back to the more recent of the time points. Thus, for this instance of Z each entry Fj; in the F matrix is equal to
Emin(ij)> meaning

ti t tn ... 1
t1 to to ... o
F = t1 tp t3 ... (3
t1 toy t3 ... ty
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The Cholesky decomposition F = CCT then gives

NG 0 0
NGV 23 0

~

C=|vtu V-t Jiz—t
. 0
Vi V=t izt ... h o b1

~] .

The inverse of this matrix is

1/ve 0 0 0
-1/Vee—t 1/y&—t 0
0 -1/Vtz—t2 1/\tz —t2

0
0 0 0 oo 1/t — w1

cl=

If V4 is a constant, then the entries of X = (1/4/2V4 )C_li are equal to the X; values of Equation 15, and Qx is equal to the
quantity in Equation 16.

Appendix E: Simulation Details

We ran simulations of polygenic scores, as well as coalescent trees and haplotypes associated with them, with and without
selection.

For each trait, we simulated the frequency of the derived allele at each of k independent, trait-associated loci. We ensured
that at all loci the minor allele frequency was at least 0.01, both at the onset of selection (if applicable) and at the present.
Allele-frequency time courses were simulated using the normal approximation to the diffusion.

In particular, for each locus, an effect size for the derived allele was drawn from the normal distribution with expectation zero
and variance equal to h?o2w/k, where h? is the desired heritability (because we are focused on polygenic scores rather than
traits themselves, h? = 1), o2 is the desired variance of the trait (i.e., polygenic score; always 1 in our simulations), w is a
modified version of Watterson’s constant for the population ZILSFENC)C%NJ 1/i with c equal to the minimum minor allele frequency
being drawn (here, ¢ = 0.01), and k is the number of independent loci affecting the trait. Drawing effect sizes from this
distribution gives the property that, under neutrality, if the loci affecting the trait are independent and a trait is formed by
adding the individual’s polygenic score to an independent “environmental” term with variance 1 — h?, then the resulting trait
has variance o2 in expectation.

Once the effect size was specified, we selected a derived-allele frequency from the population-level neutral site frequency
spectrum, conditional on the requirement that the minor allele frequency be at least 0.01. That is, we set the probability of
drawing a derived-allele frequency k/(2N) to be proportional to 1/k for all k € {T0.01 X 2N1,...,10.99 X 2N} (and zero
otherwise). Under neutrality, this randomly drawn allele frequency was treated as the derived-allele frequency at the present.
In simulations including a period of selection before the present, this frequency was used as the allele frequency at the start of
selection. In simulations with selection, the derived-allele frequency was simulated forward in time in steps of 1/(2N) co-
alescent units (i.e., one diploid generation). Conditional on frequency p;, the frequency at the next time step, p;;1, was drawn
from a normal distribution with expectation p; + sp;(1 — p;) and variance p;(1 — p;)/(2N). Here, s is the selection coefficient on
the derived allele at time ¢, which is computed as s = o8 (equation 3.17 in Charlesworth and Charlesworth 2010), where « is
the selection gradient on the trait at time t and 3 is the effect size of the derived allele. Two clarifications about the selection
coefficient: first, this is the selection coefficient for the heterozygote, meaning that if the fitness of the ancestral homozy-
gote is proportional to 1 (marginalizing over the other loci that affect the trait), then the fitness of the heterozygoteis 1 +s
and the fitness of the derived homozygote is 1 + 2s. Similarly, the effect size « is the expected trait value difference between
the heterozygote and the ancestral homozygote, holding the genotype at all other loci constant. Second, the selection
gradient is equal to @ = S/, where S is the selection differential on the trait—that is, the mean difference in phenotype
between the parents of the next generation and the overall population (section 3.3.iii in Charlesworth and Charlesworth
2010)—and 0% is the trait variance. Here, we used the expected trait variance at the onset of selection (which was 1) to set
the value of «, which was retained over the course of the period of selection, regardless of the realized value of the trait
variance.

Once the allele-frequency time course was simulated forward to the present, it was retained if the minor allele frequency in the
present was at least 0.01. (Otherwise, the time course was discarded and the process was repeated.) To simulate the period from
the origin of the mutation up until the onset of selection, we simulated steps backward in time using the normal approximation to
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the neutral diffusion, conditional on loss of the allele. In particular, given a derived-allele frequency p;, the allele frequency
1/(2N) coalescent time units further in the past was drawn from a normal distribution with expectation p;[1 — 1/(2N)] and
variance p(1 — p¢)/(2N) (Przeworski et al. 2005; Berg and Coop 2015; Lee and Coop 2017).

In each set of simulations with selection, we retained polygenic-score time courses if their difference in value between the
beginning and end of the period of selection was within 5% of the target value, which is given by 2NétS, where N is the effective
population size, 6t is the duration of selection in coalescent units, and S is the selection differential.

To simulate coalescent trees and haplotypes at each locus, these allele-frequency time courses were used as input to mssel
(Berg and Coop 2015), a version of ms (Hudson 2002) that can incorporate by conditioning on user-specified allele-frequency
time courses. In mssel, we set the sample size to 200 and the number of derived chromosomes to the value of a binomial(200, p)
random draw, where p is the present-day frequency of the derived allele. If the random draw was equal to 0 or 200, then it was
set to 1 or 199, respectively, to force the locus to be segregating in the sample. We chose a population size of 10,000, a
haplotype length of 200,000 (with the effect locus at position 100,000), a per-base-pair mutation rate of 2 X 10~8, and a per-
base-pair recombination rate of 2.5 X 10~8. These values imply population-scaled ms inputs of -r 199.5 and -t 159.68. Here,
4NrL = 200 and 4NuL = 160; our slight differences from these values arise from the fact that we compute 4Nf(0), where f is
the probability distribution function of either a binomial(L, ) random variable or a binomial(L, ) random variable, respec-
tively, with L = 200, 000. That is, we define the locus-wide recombination (or mutation) rate as one minus the probability that
no recombinations (or no mutations) occur anywhere in the locus. We used the flags -T and -L to include the true trees and
times to the most recent common ancestor in the output.

The coalescent trees produced by mssel for the selected sites were used as the true trees, and the haplotypes produced were
used as input to RENT + to generate estimated trees (Mirzaei and Wu 2016). Both true and estimated trees were read into R (R
Core Team 2013) and handled using the ape package (Paradis et al. 2004). All the estimators and tests used in this article were
coded in R.

Appendix F: Power Comparison with an Analog of trait SDS

Field et al. (2016) proposed the SDS as a test statistic for detecting very recent selection. Because recent selection distorts the
terminal branches of the coalescent at a selected locus, Field et al. reasoned that recent selection would alter the distribution of
singleton mutations around selected sites. Specifically, favored alleles are expected to have short terminal coalescent branches
and thus relatively few singletons nearby compared with disfavored alleles.

Field et al. use distances to the nearest singletons on each allele’s background to estimate the difference in the mean length
of the terminal branches for the two alleles. This estimated mean difference is then standardized by an empirical mean and
standard deviation computed from neutral simulations at a similar derived-allele frequency. To test for selection on polygenic
traits, they construct a trait SDS (tSDS) by summing each locus’s standardized SDS, signed so that positive values suggest
selection for higher trait values.

Here, we compute power for an analog of tSDS in the simulations shown in Figure 6, with the differences that in our case the
true terminal branch lengths are known, and we use the true effect sizes in computing tSDS. Both of these changes should
enhance the power of tSDS. Specifically, at each locus the SDS value is

ta — tq — Dpar

S —
SD(Dpar)

(F1)

where t, is the mean terminal branch length for the ancestral allele, #; is the mean terminal branch length for the derived allele,
Dpar is the sample mean of t, — f; computed from 500 neutral simulations at the same sample size and derived-allele frequency
(in bins of 0.005), and SD(Dpar) is the sample standard deviation of £, — £; from the same 500 neutral simulations. [It is also
possible to replace Dpar and SD(Dpar) with analytical values from Fu and Li (1993) under the assumption that the allele
frequency does not change. Doing so gives similar results to those we report here.] To compute the tSDS statistic for a polygenic
score, we use

tSDS = Y B;S;, (F2)

where B, is the derived-allele effect size at locus i and S; is the value of Equation F1 for locus i. [In Field and colleagues’ version,
B is replaced with sign(B;), which has lower power when the effect size is known.] A polygenic score will tend to have higher
tSDS if higher polygenic-score values have been selected for recently. To test for significance, we form a permutation distri-
bution by recomputing tSDS 10,000 times while randomly permuting the effect sizes.
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Figure F1 Power of the tSDS analog as a function of timing of selection and present-day sample size. In addition to results for the tSDS analog, we
show power from the Tx test with a sample of 1000 chromosomes as a guide to the eye for comparisons with Figure 6 (dashed black line). As in Figure
6, power is shown on the vertical axis, and the horizontal axis shows the timing of a pulse of selection lasting 0.005 units and resulting in a shift in the
population-average polygenic score of approximately one standard deviation (in present-day standard deviations). Each point is based on power from
100 simulations.

The power of the tSDS analog as a function of the timing of a selective pulse leading to a change in the polygenic score of
approximately one standard deviation is shown in Figure F1. We also show the power of Tx with a sample size of 1000 chro-
mosomes for comparison (from Figure 6). Compared with Ty, the tSDS has lower power, and its power drops off more rapidly
as the timing of selection moves further into the past. This is not surprising because tSDS relies only on terminal branches, and
Tx uses all the intercoalescent times.

At this writing, tSDS has the advantage of scaling readily to large samples. In contrast, Ty requires a reconstructed tree, which
is currently error prone and computationally intensive. However, as tree reconstruction becomes faster and more accurate, the
ability to use information from nonterminal branches will provide power benefits, especially beyond the very recent past.

Appendix G: Height Analysis Details

We estimated the time courses of two of the polygenic scores for height studied in Berg et al. (2018). Information about the
loci included in each polygenic score (including reference SNP ID, effect size, chromosome, and position) was provided by
Jeremy Berg. Each polygenic score was initially constructed by choosing the locus with the lowest P-value for a test of
association with height, conditional on a minor allele frequency of at least 5%, within each of ~1700 approximately
independent genomic regions defined by Berisa and Pickrell (2016). (For GIANT, the polygenic score includes 1697 loci,
and for UK Biobank, 1700 loci are included.) For the GIANT polygenic score, effect sizes and P-values were taken from
Wood et al. (2014), and for the UK Biobank polygenic score, effect sizes and P-values were taken from Neale Lab (2017).
[Berg et al. (2018) includes several polygenic scores constructed from UK Biobank effect sizes; the one we use corre-
sponds to their UKB-GB.]

We used sequence information from the 1000 Genomes GBR subsample (1000 Genomes Project Consortium et al. 2012,
release 20130502), which includes 91 genomes. For each locus included in each polygenic score, we extracted phased
sequence information in a window extending 100,000 bases from the locus on each side using tabix (Li 2011). The resulting
.vef file was processed into a form acceptable by RENT + using vcftools (Danecek et al. 2011) and R (R Core Team 2013). We
then used RENT+ (Mirzaei and Wu 2016) to estimate an ARG for the region, including the “-t” flag to estimate branch lengths.
Our version of RENT+ was modified slightly to print branch lengths to greater precision and to print RENT+’s internal
estimate of 0 that it uses to scale the branch lengths.

For both polygenic scores, we rescaled the effect sizes so that their standard deviation in the present-day sample is
one, assuming linkage equilibrium amongloci. In particular, if the sample frequencies of the effect alleles at the k loci are
DP1,D2,- - -, Pk and the effect sizes are B, B, . . ., By, then if the loci are independent, the variance of the polygenic-score
Zis

k
Var(Z) = ZZBiZPi(l ~pi)-
i=1

=

If Var(Z) is computed from the original effect sizes, then we rescale the effect sizes as 8; = B8;/+/Var(Z) when computing the
polygenic scores.
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Finally, we rescaled the branch lengths estimated by RENT +. RENT + estimates a per-nucleotide, population-scaled mutation
rate § = 4N using Watterson’s estimator (Watterson 1975). That is, for a sample of n haplotypes each covering a region of w
base pairs, with S the number of segregating sites in the sample, 0 is estimated as

_S/w
=
Yt

>

The time in coalescent units separating a pair of haplotypes is then estimated ast = 2H/ (Lé), where H is the Hamming distance
between a pair of haplotypes. For samples of size greater than two, RENT+ estimates branch lengths using a similar logic but
using local distance matrices that take into account inferred recombinations.

We scaled RENT+’s estimated times because the Watterson estimator is biased downward if the population has been
growing exponentially, and the human population has grown superexponentially (Keinan and Clark 2012). As a result, the
inferred coalescent times from RENT+ were implausibly large. We first multiplied branch lengths at each locus by the 60
estimate at each locus, giving branch lengths in units of twice the mutational distance per base pair at all sites. To convert these
mutational distances into approximate coalescent units, we computed the time to the most recent common ancestor (tMRCA)
at each locus, and then rescaled the branch lengths at all loci by a constant factor that set the mean tMRCA to two, the
expectation in coalescent units under neutrality.
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